Détail de l'auteur
Auteur Yi Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Zhice Fang, Auteur ; Yi Wang, Auteur ; Ling Peng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 321 - 347 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie locale
[Termes IGN] pondération
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal récurrent
[Termes IGN] risque naturelRésumé : (auteur) This study introduces four heterogeneous ensemble-learning techniques, that is, stacking, blending, simple averaging, and weighted averaging, to predict landslide susceptibility in Yanshan County, China. These techniques combine several state-of-the-art classifiers of convolutional neural network, recurrent neural network, support vector machine, and logistic regression in specific ways to produce reliable results and avoid problems with the model selection. The study consists of three main steps. The first step establishes a spatial database consisting of 16 landslide conditioning factors and 380 historical landslide locations. The second step randomly selects training (70% of the total) and test (30%) datasets out of grid cells corresponding to landslide and non-slide locations in the study area. The final step constructs the proposed heterogeneous ensemble-learning methods for landslide susceptibility mapping. The proposed ensemble-learning methods show higher prediction accuracy than the individual classifiers mentioned above based on statistical measures. The blending ensemble-learning method achieves the highest overall accuracy of 80.70% compared to the other ensemble-learning methods. Numéro de notice : A2021-028 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808897 Date de publication en ligne : 15/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808897 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96704
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 321 - 347[article]