Détail de l'auteur
Auteur Petrut Bogdan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : SpiNNaker: A spiking neural network architecture Type de document : Monographie Auteurs : Steve Furber, Éditeur scientifique ; Petrut Bogdan, Éditeur scientifique Editeur : Boston, Delft : Now publishers Année de publication : 2020 Importance : 352 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-1-68083-652-3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] cerveau
[Termes IGN] outil logiciel
[Termes IGN] programmation stochastique
[Termes IGN] puce
[Termes IGN] réseau neuronal convolutif
[Termes IGN] système de traitement de l'information
[Termes IGN] vision par ordinateurRésumé : (éditeur) 20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come. Note de contenu : 1- Origins
2- The SpiNNaker Chip
3- Building SpiNNaker Machines
4- Stacks of Software Stacks
5- Applications - Doing Stuff on the Machine
6- From Activations to Spikes
7- Learning in Neural Networks
8- Creating the FutureNuméro de notice : 25978 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Monographie DOI : 10.1561/9781680836523 En ligne : http://dx.doi.org/10.1561/9781680836523 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96705