Détail de l'auteur
Auteur Huan Ning |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
[article]
Titre : Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1317 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] distorsion d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hauteur du bâti
[Termes IGN] image Streetview
[Termes IGN] lever tachéométrique
[Termes IGN] modèle numérique de surface
[Termes IGN] porteRésumé : (auteur) Street view imagery such as Google Street View is widely used in people’s daily lives. Many studies have been conducted to detect and map objects such as traffic signs and sidewalks for urban built-up environment analysis. While mapping objects in the horizontal dimension is common in those studies, automatic vertical measuring in large areas is underexploited. Vertical information from street view imagery can benefit a variety of studies. One notable application is estimating the lowest floor elevation, which is critical for building flood vulnerability assessment and insurance premium calculation. In this article, we explored the vertical measurement in street view imagery using the principle of tacheometric surveying. In the case study of lowest floor elevation estimation using Google Street View images, we trained a neural network (YOLO-v5) for door detection and used the fixed height of doors to measure doors’ elevation. The results suggest that the average error of estimated elevation is 0.218 m. The depthmaps of Google Street View were utilized to traverse the elevation from the roadway surface to target objects. The proposed pipeline provides a novel approach for automatic elevation estimation from street view imagery and is expected to benefit future terrain-related studies for large areas. Numéro de notice : A2022-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1981334 Date de publication en ligne : 06/10/2021 En ligne : https://doi.org/10.1080/13658816.2021.1981334 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100970
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1317 - 1342[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images / Xiao Li in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
[article]
Titre : Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images Type de document : Article/Communication Auteurs : Xiao Li, Auteur ; Huan Ning, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 32 - 49 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] carrefour
[Termes IGN] cartographie urbaine
[Termes IGN] couche thématique
[Termes IGN] exploration d'images
[Termes IGN] feu de circulation
[Termes IGN] image Streetview
[Termes IGN] Mapillary
[Termes IGN] réseau routier
[Termes IGN] segmentation d'image
[Termes IGN] signalisation routièreRésumé : (auteur) Auditing and mapping traffic infrastructure is a crucial task in urban management. For example, signalized intersections play an essential role in transportation management; however, effectively identifying these intersections remains unsolved. Traditionally, signalized intersection data are manually collected through field audits or checking street view images (SVIs), which is time-consuming and labor-intensive. This study proposes an effective protocol to identify signalized intersections using road networks and SVIs. First, we propose a six-step geoprocessing model to generate an intersection feature layer from road networks. Second, we utilize up to three nearest SVIs to capture streetscapes at each intersection. Then, a deep learning-based image segmentation model is adopted to recognize traffic light-related pixels from each SVI. Last, we design a post-processing step to generate new features characterizing SVIs’ segmentation results at each intersection and build a decision tree model to determine the traffic control type. Results demonstrate that the proposed protocol can effectively identify signalized intersections with an overall accuracy of 97.05%. It also proves the effectiveness of SVIs for auditing urban infrastructures. This study can directly benefit transportation agencies by providing a ready-to-use smart audit and mapping solution for large-scale identification and mapping of signalized intersections. Numéro de notice : A2022-017 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/15230406.2021.1992299 Date de publication en ligne : 16/11/2021 En ligne : https://doi.org/10.1080/15230406.2021.1992299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99148
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 32 - 49[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (October 2020)
[article]
Titre : Choosing an appropriate training set size when using existing data to train neural networks for land cover segmentation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Cuizhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 329 - 342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] jeu de données
[Termes IGN] Kiangsi (Chine)
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] taille du jeu de donnéesRésumé : (auteur) Land cover data is an inventory of objects on the Earth’s surface, which is often derived from remotely sensed imagery. Deep Convolutional Neural Network (DCNN) is a competitive method in image semantic segmentation. Some scholars argue that the inadequacy of training set is an obstacle when applying DCNNs in remote sensing image segmentation. While existing land cover data can be converted to large training sets, the size of training data set needs to be carefully considered. In this paper, we used different portions of a high-resolution land cover map to produce different sizes of training sets to train DCNNs (SegNet and U-Net) and then quantitatively evaluated the impact of training set size on the performance of the trained DCNN. We also introduced a new metric, Edge-ratio, to assess the performance of DCNN in maintaining the boundary of land cover objects. Based on the experiments, we document the relationship between the segmentation accuracy and the size of the training set, as well as the nonstationary accuracies among different land cover types. The findings of this paper can be used to effectively tailor the existing land cover data to training sets, and thus accelerate the assessment and employment of deep learning techniques for high-resolution land cover map extraction. Numéro de notice : A2020-800 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1803402 Date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1803402 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96723
in Annals of GIS > vol 26 n° 4 (October 2020) . - pp 329 - 342[article]