Détail de l'auteur
Auteur Jize Xue |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
[article]
Titre : Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition Type de document : Article/Communication Auteurs : Yuanyang Bu, Auteur ; Yong-Qiang Zhao, Auteur ; Jize Xue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 648 - 662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] calcul tensoriel
[Termes IGN] équation de Laplace
[Termes IGN] fusion d'images
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] optimisation (mathématiques)
[Termes IGN] tenseur
[Termes IGN] théorie des variétésRésumé : (auteur) We propose a novel graph Laplacian-guided coupled tensor decomposition (gLGCTD) model for fusion of hyperspectral image (HSI) and multispectral image (MSI) for spatial and spectral resolution enhancements. The coupled Tucker decomposition is employed to capture the global interdependencies across the different modes to fully exploit the intrinsic global spatial–spectral information. To preserve local characteristics, the complementary submanifold structures embedded in high-resolution (HR)-HSI are encoded by the graph Laplacian regularizations. The global spatial–spectral information captured by the coupled Tucker decomposition and the local submanifold structures are incorporated into a unified framework. The gLGCTD fusion framework is solved by a hybrid framework between the proximal alternating optimization (PAO) and the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real data sets demonstrate that the gLGCTD fusion method is superior to state-of-the-art fusion methods with a more accurate reconstruction of the HR-HSI. Numéro de notice : A2021-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992788 Date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992788 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96738
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 648 - 662[article]