Détail de l'auteur
Auteur Mohamed Mostafa Mohamed |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers / Qasim Khan in Geocarto international, vol 37 n° 20 ([20/09/2022])
[article]
Titre : A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers Type de document : Article/Communication Auteurs : Qasim Khan, Auteur ; Muhammad Usman Liaqat, Auteur ; Mohamed Mostafa Mohamed, Auteur Année de publication : 2022 Article en page(s) : pp 5832 - 5850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] aquifère
[Termes IGN] ArcGIS
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] eau souterraine
[Termes IGN] Emirats Arabes Unis
[Termes IGN] estimation par noyau
[Termes IGN] nitrate
[Termes IGN] vulnérabilitéRésumé : (auteur) Groundwater is more prone to contamination due to its extensive usage. Different methods are applied to study vulnerability of groundwater including widely used DRASTIC method, SI and GOD. This study proposes a novel method of mapping groundwater vulnerability using machine learning algorithms. In this study, point extraction method was used to extract point values from a grid of 646 points of seven raster layer in the Al Khatim study area of United Arab Emirates. These extracted values were classified based on nitrate concentration threshold of 50 mg/L into two classes. Machine learning models were developed, using depth to water (D), recharge (R), aquifer media (A), soil media (S), topography (T), vadose zone (I) and hydraulic conductivity (C), on the basis of nitrate class. Classified ‘groundwater vulnerability class values’ were trained using 10-fold cross-validation, using four machine learning models which were Random Forest, Support Vector Machine, Naïve Bayes and C4. 5. Accuracy showed the model developed by Random Forest gained highest accuracy of 93%. Four groundwater vulnerability maps were developed from machine learning classifiers and was compared with base method of DRASTIC index. The efficiency, accuracy and validity of machine learning based models were evaluated based on Receiver Operating Characteristics (ROC) curve and Precision-Recall curve (PRC). The results proved that machine learning is an efficient tool to access, analyze and map groundwater vulnerability. Numéro de notice : A2022-716 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1923833 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1923833 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101641
in Geocarto international > vol 37 n° 20 [20/09/2022] . - pp 5832 - 5850[article]Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM / Samy Ismail Elmahdy in Geocarto international, vol 36 n° 1 ([01/01/2021])
[article]
Titre : Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM Type de document : Article/Communication Auteurs : Samy Ismail Elmahdy, Auteur ; Mohamed Mostafa Mohamed, Auteur ; Tarig A Ali, Auteur Année de publication : 2021 Article en page(s) : pp 76 - 95 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte géologique
[Termes IGN] linéament
[Termes IGN] Malaisie
[Termes IGN] milieu tropical
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] structure géologiqueRésumé : (Auteur) The availability of the large volume of remote sensing data has allowed for the developing of several automated algorithms for detecting linear geological features and more reliable analysis. However, most of the algorithms focus on edge detection and tone change on a satellite image, which represents all geological and non-geological features. In this study, a topographic fabric algorithm, which calculates the slope and aspect at each point in a DEM, is applied for automatically geological linear features mapping in Bau Goldfield, Malaysia using the new version of the Shuttle Radar Topographic Mission (SRTM) DEM. A series of topographic fabric input parameters was tested using different combinations of input values in order to decide the optimal parameters that provided the suitable detection parameters, best fit and the highest accuracy. Comparison with the geological map demonstrated that the tested parameters made the algorithm able to automatically detect geological structures. Numéro de notice : A2021-052 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1594393 Date de publication en ligne : 29/05/2019 En ligne : https://doi.org/10.1080/10106049.2019.1594393 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96776
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 76 - 95[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021011 RAB Revue Centre de documentation En réserve L003 Disponible