Détail de l'auteur
Auteur Eric K. Zenner |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Modeling in forestry using mixture models fitted to grouped and ungrouped data / Eric K. Zenner in Forests, vol 12 n° 9 (September 2021)
[article]
Titre : Modeling in forestry using mixture models fitted to grouped and ungrouped data Type de document : Article/Communication Auteurs : Eric K. Zenner, Auteur ; Mahdi Teimouri, Auteur Année de publication : 2021 Article en page(s) : n° 1196 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] complexité
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] distribution de Weibull
[Termes IGN] distribution, loi de
[Termes IGN] dynamique de la végétation
[Termes IGN] estimation par noyau
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modélisation de la forêt
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) The creation and maintenance of complex forest structures has become an important forestry objective. Complex forest structures, often expressed in multimodal shapes of tree size/diameter (DBH) distributions, are challenging to model. Mixture probability density functions of two- or three-component gamma, log-normal, and Weibull mixture models offer a solution and can additionally provide insights into forest dynamics. Model parameters can be efficiently estimated with the maximum likelihood (ML) approach using iterative methods such as the Newton-Raphson (NR) algorithm. However, the NR algorithm is sensitive to the choice of initial values and does not always converge. As an alternative, we explored the use of the iterative expectation-maximization (EM) algorithm for estimating parameters of the aforementioned mixture models because it always converges to ML estimators. Since forestry data frequently occur both in grouped (classified) and ungrouped (raw) forms, the EM algorithm was applied to explore the goodness-of-fit of the gamma, log-normal, and Weibull mixture distributions in three sample plots that exhibited irregular, multimodal, highly skewed, and heavy-tailed DBH distributions where some size classes were empty. The EM-based goodness-of-fit was further compared against a nonparametric kernel-based density estimation (NK) model and the recently popularized gamma-shaped mixture (GSM) models using the ungrouped data. In this example application, the EM algorithm provided well-fitting two- or three-component mixture models for all three model families. The number of components of the best-fitting models differed among the three sample plots (but not among model families) and the mixture models of the log-normal and gamma families provided a better fit than the Weibull distribution for grouped and ungrouped data. For ungrouped data, both log-normal and gamma mixture distributions outperformed the GSM model and, with the exception of the multimodal diameter distribution, also the NK model. The EM algorithm appears to be a promising tool for modeling complex forest structures. Numéro de notice : A2021-721 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f12091196 En ligne : https://doi.org/10.3390/f12091196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98639
in Forests > vol 12 n° 9 (September 2021) . - n° 1196[article]Analysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest / Seyedeh Kosar Hamidi in Annals of Forest Science, vol 78 n° 1 (March 2021)
[article]
Titre : Analysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest Type de document : Article/Communication Auteurs : Seyedeh Kosar Hamidi, Auteur ; Eric K. Zenner, Auteur ; Mahmoud Bayat, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Acer velutinum
[Termes IGN] Alnus cordata
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] Carpinus betulus
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dynamique de la végétation
[Termes IGN] écosystème forestier
[Termes IGN] Fagus orientalis
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Iran
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] peuplement mélangé
[Termes IGN] régression linéaire
[Termes IGN] volume en bois
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Key message: We modeled 10-year net stand volume growth with four machine learning (ML) methods, i.e., artificial neural networks (ANN), support vector machines (SVM), random forests (RF), and nearest neighbor analysis (NN), and with linear regression analysis. Incorporating interactions of multiple variables, the ML methods ANN and SVM predicted nonlinear system behavior and unraveled complex relations with greater accuracy than regression analysis.
Context: Investigating the quantitative and qualitative characteristics of short-term forest dynamics is essential for testing whether the desired goals in forest-ecosystem conservation and restoration are achieved. Inventory data from the Jojadeh section of the Farim Forest located in the uneven-aged, mixed Hyrcanian Forest were used to model and predict 10-year net annual stand volume increment with new machine learning technologies.
Aims: The main objective of this study was to predict net annual stand volume increment as the preeminent factor of forest growth and yield models.
Methods: In the current study, volume increment was modeled from two consecutive inventories in 2003 and 2013 using four machine learning techniques that used physiographic data of the forest as input for model development: (i) artificial neural networks (ANN), (ii) support vector machines (SVM), (iii) random forests (RF), and (iv) nearest neighbor analysis (NN). Results from the various machine learning technologies were compared against results produced with regression analysis.
Results: ANNs and SVMs with a linear kernel function that incorporated field-measurements of terrain slope and aspect as input variables were able to predict plot-level volume increment with a greater accuracy (94%) than regression analysis (87%).
Conclusion: These results provide compelling evidence for the added utility of machine learning technologies for modeling plot-level volume increment in the context of forest dynamics and management.Numéro de notice : A2021-071 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01011-6 Date de publication en ligne : 12/01/2021 En ligne : https://doi.org/10.1007/s13595-020-01011-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96794
in Annals of Forest Science > vol 78 n° 1 (March 2021) . - n° 4[article]