Détail de l'auteur
Auteur Jinfei Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : Urban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method Type de document : Article/Communication Auteurs : Qiang Chen, Auteur ; Qianhao Cheng, Auteur ; Jinfei Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse multicritère
[Termes IGN] analyse spectrale
[Termes IGN] construction
[Termes IGN] déchet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gestion urbaine
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie
[Termes IGN] Pékin (Chine)
[Termes IGN] segmentation hiérarchique
[Termes IGN] urbanisationRésumé : (auteur) With rapid urbanization, the disposal and management of urban construction waste have become the main concerns of urban management. The distribution of urban construction waste is characterized by its wide range, irregularity, and ease of confusion with the surrounding ground objects, such as bare soil, buildings, and vegetation. Therefore, it is difficult to extract and identify information related to urban construction waste by using the traditional single spectral feature analysis method due to the problem of spectral confusion between construction waste and the surrounding ground objects, especially in the context of very-high-resolution (VHR) remote sensing images. Considering the multi-feature analysis method for VHR remote sensing images, we propose an optimal method that combines morphological indexing and hierarchical segmentation to extract the information on urban construction waste in VHR images. By comparing the differences between construction waste and the surrounding ground objects in terms of the spectrum, geometry, texture, and other features, we selected an optimal feature subset to improve the separability of the construction waste and other objects; then, we established a classification model of knowledge rules to achieve the rapid and accurate extraction of construction waste information. We also chose two experimental areas of Beijing to validate our algorithm. By using construction waste separability quality evaluation indexes, the identification accuracy of construction waste in the two study areas was determined to be 96.6% and 96.2%, the separability indexes of the construction waste and buildings reached 1.000, and the separability indexes of the construction waste and vegetation reached 1.000 and 0.818. The experimental results show that our method can accurately identify the exposed construction waste and construction waste covered with a dust screen, and it can effectively solve the problem of spectral confusion between the construction waste and the bare soil, buildings, and vegetation. Numéro de notice : A2021-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010158 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010158 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96809
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 158[article]