Détail de l'auteur
Auteur Tais Grippa |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A user-driven process for INSPIRE-compliant land use database: example from Wallonia, Belgium / Benjamin Beaumont in Annals of GIS, vol 27 n° 2 (April 2021)
[article]
Titre : A user-driven process for INSPIRE-compliant land use database: example from Wallonia, Belgium Type de document : Article/Communication Auteurs : Benjamin Beaumont, Auteur ; Tais Grippa, Auteur ; Moritz Lennert, Auteur Année de publication : 2021 Article en page(s) : pp 211 - 224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] aménagement du territoire
[Termes IGN] base de données foncières
[Termes IGN] carte d'occupation du sol
[Termes IGN] chaîne de traitement
[Termes IGN] données massives
[Termes IGN] édition en libre accès
[Termes IGN] infrastructure européenne de données localisées
[Termes IGN] INSPIRE
[Termes IGN] utilisateur
[Termes IGN] utilisation du sol
[Termes IGN] Wallonie (Belgique)Résumé : (auteur) Regional land use monitoring at high spatial, temporal, and thematic resolution is an important expectation of Walloon stakeholders. Over the last decade, increased data-processing capacities and the annual acquisition of remotely sensed data have resulted in the production of a large amount of relevant geodata. The INSPIRE directive and its obligations for 2020 serve as a path for the development of a new user-driven and open-source hierarchical land use classification system mapping scheme, as presented in this paper. The process includes intensive user consultation, the development of an entire automatic processing chain, and efforts to address challenges such as big data handling, the variability of input data properties, and reproducibility. The thematically detailed land use map, with its 69 classes, is already widely used by Walloon stakeholders, and new demands for updating have already emerged. Based on a European classification system that is compulsory for all member states, INSPIRE-compliant land use maps will make it possible to carry out cross-border studies and compare spatial planning strategies between states. Numéro de notice : A2021-626 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2021.1875047 Date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1080/19475683.2021.1875047 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98256
in Annals of GIS > vol 27 n° 2 (April 2021) . - pp 211 - 224[article]Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] autocorrélation spatiale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Dakar (Sénégal)
[Termes IGN] densité de population
[Termes IGN] distribution spatiale
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle dynamique
[Termes IGN] population
[Termes IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]