Détail de l'auteur
Auteur Parinaz Rahimzadeh-Bajgiran |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
[article]
Titre : Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery Type de document : Article/Communication Auteurs : Rajeev Bhattarai, Auteur ; Parinaz Rahimzadeh-Bajgiran, Auteur ; Aaron R. Weiskittel, Auteur Année de publication : 2021 Article en page(s) : pp 28 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Abies balsamea
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] défoliation
[Termes IGN] dégradation de la flore
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] insecte phyllophage
[Termes IGN] Nouveau-Brunswick (Canada)
[Termes IGN] Picea abiesRésumé : (auteur) Spruce budworm (Choristoneura fumiferana; SBW) is the most destructive forest pest of northeastern Canada and United States. SBW occurrence as well as the extent and severity of its damage are highly dependent on the characteristics of the forests and the availability of host species namely, spruce (Picea sp.) and balsam fir (Abies balsamea (L.) Mill.). Remote sensing satellite imagery represents a valuable data source for seamless regional-scale mapping of forest composition. This study developed and evaluated new models to map the distribution and abundance of SBW host species at 20 m spatial resolution using Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery in combination with several site variables for a total of 191 variables in northern New Brunswick, Canada using the Random Forest (RF) algorithm. We found Sentinel-2 multi-temporal single spectral bands and numerous spectral vegetation indices (SVIs) yielded the classification of SBW host species with an overall accuracy (OA) of 72.6% and kappa coefficient (K) of 0.65. Incorporating Sentinel-1 SAR data with Sentinel-2 variables coupled with elevation, only marginally improved the performance of the model (OA: 73.0% and K: 0.66). The use of Sentinel-1 SAR data with elevation resulted in a reasonable OA of 57.5% and K of 0.47. These spatially explicit up-to-date SBW host species maps are essential for identifying susceptible forests, monitoring SBW defoliation, and minimizing forest losses from insect impacts at landscape scale in the current SBW outbreak in the region. Numéro de notice : A2021-085 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.023 Date de publication en ligne : 15/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96845
in ISPRS Journal of photogrammetry and remote sensing > vol 172 (February 2021) . - pp 28 - 40[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 081-2021021 SL Revue Centre de documentation Revues en salle Disponible 081-2021022 DEP-RECF Revue Nancy Bibliothèque Nancy IFN Exclu du prêt