Détail de l'auteur
Auteur Pinliang Dong |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Individual tree identification using a new cluster-based approach with discrete-return airborne LiDAR data / Haijian Liu in Remote sensing of environment, vol 258 (June 2021)
[article]
Titre : Individual tree identification using a new cluster-based approach with discrete-return airborne LiDAR data Type de document : Article/Communication Auteurs : Haijian Liu, Auteur ; Pinliang Dong, Auteur ; Changshan Wu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112382 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] arbre (flore)
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] houppier
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] peuplement mélangé
[Termes IGN] semis de points
[Termes IGN] surveillance forestière
[Termes IGN] Wisconsin (Etats-Unis)Résumé : (auteur) Individual tree identification is a key step for forest surveying and monitoring. To identify individual trees with airborne LiDAR data, a local maximum (LM) filter technique is typically performed. With LM, the highest point in a filtering window is generally considered to represent the tree position. This assumption, however, has great limitations, especially for mixed forests. To address this problem, we developed a new approach, the cluster center of higher points (CCHP), for tree position detection with LiDAR data. CCHP assumes that a tree position is located at the clustering center of higher points within a spatial neighborhood, and the center can be detected by a location-based recursive algorithm. The developed CCHP method was applied to a simulated forest and then verified in two real urban forests. In comparison with the variable window-sized LM filter method and layer stacking method, CCHP successfully identified 97% of trees in the simulated forest, while only 78% and 81% of the trees were recognized by LM and layer stacking methods respectively. The average absolute and relative offsets of CCHP are 0.33 m and 6.59%, respectively, and over 80% of the detected trees have an offset of less than 10% of the tree crown radius. CCHP also correctly detected 93.80% and 88.74% of individual trees in the first and second real forests, respectively, but the detection rates from the variable window-sized LM approach and layer stacking were less than 80%. In addition, the tree positions located by CCHP are considerably more accurate than the other two methods. Therefore, CCHP is proven to be promising for detecting individual tree positions from airborne LiDAR data for both simulated and real forests. Numéro de notice : A2021-443 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112382 Date de publication en ligne : 06/03/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112382 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97850
in Remote sensing of environment > vol 258 (June 2021) . - n° 112382[article]Geomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data / Yanping Wang in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
[article]
Titre : Geomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data Type de document : Article/Communication Auteurs : Yanping Wang, Auteur ; Pinliang Dong, Auteur ; Yueqin Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 261 - 278 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] auscultation topographique
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données de terrain
[Termes IGN] effondrement de terrain
[Termes IGN] faille géologique
[Termes IGN] géomorphologie locale
[Termes IGN] image captée par drone
[Termes IGN] image SPOT 5
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau de drainage
[Termes IGN] zone à risqueRésumé : (auteur) This study presents geomorphic analysis of Xiadian buried fault in eastern Beijing plain (China), based on the analysis of a Satellite Pour l’Observation de la Terre (SPOT-5) image, a high-resolution digital elevation model (DEM) derived from an unmanned aerial vehicle (UAV) system, SRTM DEM and field investigation. Interpretations of the SPOT-5 image show that the pits always distribute between fault scarp segments or shallow grooves. The geomorphic features near the fault show echelon arrangements caused by dextral strike-slip activities of the fault. Based on this, the characteristics of stress field in this area have been clearly inferred. At centimeter-level accuracy, UAV-derived DEM profiles can clearly show micro tectonic landforms such as fault scarps, shallow grooves, steep slopes, and pits. Combined with previous research and field measurements, the evolution rates in length and height of the fault scarps are analysed. Furthermore, the deflection analysis of the drainage system also shows the characteristics of the continuous strike slip activity of the Xiadian fault. The study can provide valuable insight into geomorphic analysis of buried and semi-buried active faults in plain areas with increasingly frequent human activities. Numéro de notice : A2021-108 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1870168 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/19475705.2020.1870168 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96905
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 261 - 278[article]