Détail de l'auteur
Auteur Linling Tang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Optimization of multi-ecosystem model ensembles to simulate vegetation growth at the global scale / Linling Tang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : Optimization of multi-ecosystem model ensembles to simulate vegetation growth at the global scale Type de document : Article/Communication Auteurs : Linling Tang, Auteur ; Qian Lei, Auteur ; Weizhe Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 962 - 978 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] croissance végétale
[Termes IGN] écosystème
[Termes IGN] estimation bayesienne
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) Process-based ecosystem models are increasingly used to simulate the effects of a changing environment on vegetation growth in the past, present, and future. To improve the simulation, the multimodel ensemble mean (MME) and ensemble Bayesian model averaging (EBMA) methods are often used in optimizing the integration of ecosystem model ensemble. These two methods were compared with four other optimization techniques, including genetic algorithm (GA), particle swarm optimization (PSO), cuckoo search (CS), and interior-point method (IPM), to evaluate their efficiency in this article. Here, we focused on eight commonly used ecosystem models to simulate vegetation growth, represented by the growing season leaf area index (LAIgs), collected globally from 2000 to 2014. The performances of the multimodel ensembles and individual models were compared using the satellite-observed LAI products as the reference. Generally, ensemble simulations provide more accurate estimates than individual models. There were significant performance differences among the six tested methods. The IPM ensemble model simulated LAIgs more accurately than the other tested models, as the reduction in the root-mean-square error was 84.99% higher than the MME results and 61.50% higher than the EBMA results. Thus, IPM optimization can reproduce LAIgs trends accurately for 91.62% of the global vegetated area, which is double the area of the results from MME. Furthermore, the contributions and uncertainties of the individual models in the final simulated IPM LAIgs changes indicated that the best individual model (CABLE) showed the greatest area fraction for the maximum IPM weight (32.49%), especially in the low-lalitude to midlatitude areas. Numéro de notice : A2021-111 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.014 Date de publication en ligne : 03/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96913
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 962 - 978[article]