Détail de l'auteur
Auteur Dongdong Guan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
SAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : SAR image speckle reduction based on nonconvex hybrid total variation model Type de document : Article/Communication Auteurs : Yuli Sun, Auteur ; Lin Lei, Auteur ; Dongdong Guan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1231 - 1249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] artefact
[Termes IGN] chatoiement
[Termes IGN] détection de contours
[Termes IGN] distribution de Fisher
[Termes IGN] gradient
[Termes IGN] image radar moirée
[Termes IGN] régularisation d'image
[Termes IGN] variableRésumé : (auteur) Speckle noise inherent in synthetic aperture radar (SAR) images seriously affects the visual effect and brings great difficulties to the postprocessing of the SAR image. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized to reduce the speckle. However, the strong scatters in SAR image with radiometry several orders of magnitude larger than their surrounding regions limit the effectiveness of TV regularization. Meanwhile, the ℓ1 -norm first-order TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant, and it usually underestimates high-amplitude components of image gradient as the ℓ1 -norm uniformly penalizes the amplitude. To overcome these shortcomings, a new hybrid variation model, called Fisher–Tippett (FT) distribution- ℓp -norm first-and second-order hybrid TVs (HTpVs), is proposed to reduce the speckle after removing the strong scatters. Especially, the FT-HTpV inherits the advantages of the distribution based data fidelity term, the nonconvex regularization, and the higher order TV regularization. Therefore, it can effectively remove the speckle while preserving point scatters and edges and reducing staircase artifacts well. To efficiently solve the nonconvex minimization problem, an iterative framework with a nonmonotone-accelerated proximal gradient (nmAPG) method and a matrix-vector acceleration strategy are used. Extensive experiments on both the simulated and real SAR images demonstrate the effectiveness of the proposed method. Numéro de notice : A2021-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002561 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96924
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1231 - 1249[article]