Détail de l'auteur
Auteur Xiaorun Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Correntropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : Correntropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing Type de document : Article/Communication Auteurs : Xiaorun Li, Auteur ; Risheng Huang, Auteur ; Liaolying Zhao, Auteur Année de publication : 2021 Article en page(s) : pp 1453 - 1471 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] corrélation
[Termes IGN] entropie
[Termes IGN] image hyperspectrale
[Termes IGN] méthode robuste
[Termes IGN] signature spectraleRésumé : (auteur) Hyperspectral unmixing (HU) is a crucial technique for exploiting remotely sensed hyperspectral data, which aims at estimating a set of spectral signatures, called endmembers and their corresponding proportions, called abundances. The performance of HU is often seriously degraded by various kinds of noise existing in hyperspectral images (HSIs). Most of existing robust HU methods are based on the assumption that noise or outlier only exists in one kind of formulation, e.g., band noise or pixel noise. However, in real-world applications, HSIs are unavoidably corrupted by noisy bands and noisy pixels simultaneously, which require robust HU in both the spatial dimension and spectral dimension. Meanwhile, the sparsity of abundances is an inherent property of HSIs and different regions in an HSI may possess various sparsity levels across locations. This article proposes a correntropy-based spatial-spectral robust sparsity-regularized unmixing model to achieve 2-D robustness and adaptive weighted sparsity constraint for abundances simultaneously. The updated rules of the proposed model are efficient to be implemented and carried out by a half-quadratic technique. The experimental results obtained by both synthetic and real hyperspectral data demonstrate the superiority of the proposed method compared to the state-of-the-art methods. Numéro de notice : A2021-116 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2999936 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2999936 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96930
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1453 - 1471[article]