Détail de l'auteur
Auteur Hairuo Xie |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Introducing diversion graph for real-time spatial data analysis with location based social networks / Sameera Kannangara (2021)
Titre : Introducing diversion graph for real-time spatial data analysis with location based social networks Type de document : Article/Communication Auteurs : Sameera Kannangara, Auteur ; Hairuo Xie, Auteur ; Egemen Tanin, Auteur ; Aaron Harwood, Auteur ; Shanika Karunasekera, Auteur Editeur : Leibniz [Allemagne] : Schloss Dagstuhl – Leibniz-Zentrum für Informatik Année de publication : 2021 Conférence : GIScience 2021, 11th International Conference on Geographic Information Science 27/09/2021 30/09/2021 Poznań Pologne Open Access Proceedings Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] graphe
[Termes IGN] image Flickr
[Termes IGN] objet mobile
[Termes IGN] réseau social géodépendant
[Termes IGN] temps réel
[Termes IGN] triangulation de Delaunay
[Termes IGN] TwitterRésumé : (auteur) Neighbourhood graphs are useful for inferring the travel network between locations posted in the Location Based Social Networks (LBSNs). Existing neighbourhood graphs, such as the Stepping Stone Graph lack the ability to process a high volume of LBSN data in real time. We propose a neighbourhood graph named Diversion Graph, which uses an efficient edge filtering method from the Delaunay triangulation mechanism for fast processing of LBSN data. This mechanism enables Diversion Graph to achieve a similar accuracy level as Stepping Stone Graph for inferring travel networks, but with a reduction of the execution time of over 90%. Using LBSN data collected from Twitter and Flickr, we show that Diversion Graph is suitable for travel network processing in real time. Numéro de notice : C2021-079 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Communication DOI : 10.4230/LIPIcs.GIScience.2021.I.7 Date de publication en ligne : 25/09/2020 En ligne : https://doi.org/10.4230/LIPIcs.GIScience.2021.I.7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100930 Route intersection reduction with connected autonomous vehicles / Sadegh Motallebi in Geoinformatica, vol 25 n° 1 (January 2021)
[article]
Titre : Route intersection reduction with connected autonomous vehicles Type de document : Article/Communication Auteurs : Sadegh Motallebi, Auteur ; Hairuo Xie, Auteur ; Egemen Tanin, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 99 - 125 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] calcul d'itinéraire
[Termes IGN] carrefour
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] gestion de trafic
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau routier
[Termes IGN] trafic routierRésumé : (Auteur) A common cause of traffic congestions is the concentration of intersecting vehicle routes. It can be difficult to reduce the intersecting routes in existing traffic systems where the routes are decided independently from vehicle to vehicle. The development of connected autonomous vehicles provides the opportunity to address the intersecting route problem as the route of vehicles can be coordinated globally. We prototype a traffic management system for optimizing traffic with connected autonomous vehicles. The system allocates routes to the vehicles based on streaming traffic data. We develop two route assignment algorithms for the system. The algorithms can help to mitigate traffic congestions by reducing intersecting routes. Extensive experiments are conducted to compare the proposed algorithms and two state-of-the-art route assignment algorithms with both synthetic and real road networks in a simulated traffic management system. The experimental results show that the proposed algorithms outperform the competitors in terms of the travel time of the vehicles. Numéro de notice : A2021-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00420-z Date de publication en ligne : 23/08/2020 En ligne : https://doi.org/10.1007/s10707-020-00420-z Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96933
in Geoinformatica > vol 25 n° 1 (January 2021) . - pp 99 - 125[article]