Détail de l'auteur
Auteur Aoxiang Fan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Image matching from handcrafted to deep features: A survey / Jiayi Ma in International journal of computer vision, vol 29 n° 1 (January 2021)
[article]
Titre : Image matching from handcrafted to deep features: A survey Type de document : Article/Communication Auteurs : Jiayi Ma, Auteur ; Xingyu Jiang, Auteur ; Aoxiang Fan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 23 - 79 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] appariement de graphes
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] lissage de courbe
[Termes IGN] recalage d'imageRésumé : (auteur) As a fundamental and critical task in various visual applications, image matching can identify then correspond the same or similar structure/content from two or more images. Over the past decades, growing amount and diversity of methods have been proposed for image matching, particularly with the development of deep learning techniques over the recent years. However, it may leave several open questions about which method would be a suitable choice for specific applications with respect to different scenarios and task requirements and how to design better image matching methods with superior performance in accuracy, robustness and efficiency. This encourages us to conduct a comprehensive and systematic review and analysis for those classical and latest techniques. Following the feature-based image matching pipeline, we first introduce feature detection, description, and matching techniques from handcrafted methods to trainable ones and provide an analysis of the development of these methods in theory and practice. Secondly, we briefly introduce several typical image matching-based applications for a comprehensive understanding of the significance of image matching. In addition, we also provide a comprehensive and objective comparison of these classical and latest techniques through extensive experiments on representative datasets. Finally, we conclude with the current status of image matching technologies and deliver insightful discussions and prospects for future works. This survey can serve as a reference for (but not limited to) researchers and engineers in image matching and related fields. Numéro de notice : A2021-131 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-020-01359-2 Date de publication en ligne : 04/08/2020 En ligne : https://doi.org/https://doi.org/10.1007/s11263-020-01359-2 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96967
in International journal of computer vision > vol 29 n° 1 (January 2021) . - pp 23 - 79[article]