Détail de l'auteur
Auteur André Wästlund |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Updating of forest stand data by using recent digital photogrammetry in combination with older airborne laser scanning data / Niels Lindgren in Scandinavian journal of forest research, vol 36 n° 5 ([01/07/2021])
[article]
Titre : Updating of forest stand data by using recent digital photogrammetry in combination with older airborne laser scanning data Type de document : Article/Communication Auteurs : Niels Lindgren, Auteur ; André Wästlund, Auteur ; Inka Bohlin, Auteur ; Kenneth Nyström, Auteur ; Mats Nilsson, Auteur ; Hakan Olsson, Auteur Année de publication : 2021 Article en page(s) : pp 401 - 407 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Betula (genre)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] orthoimage
[Termes IGN] photogrammétrie numérique
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Suède
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Accurate and up-to-date data about growing stock volume are essential for forest management planning. Airborne Laser Scanning (ALS) is known for producing accurate wall-to-wall predictions but the data are at present collected at long time intervals. Digital Photogrammetry (DP) is cheaper and often more frequently available but known to be less accurate. This study investigates the potential of using contemporary DP data together with older ALS data and compares this with the case when only old ALS data are trained with recent field data. Combining ALS data from 2010 to 2011 with DP data from 2015, both trained with National Forest Inventory (NFI) field plot data from 2015, improved predictions of growing stock volume. Validation using data from 100 stands inventoried in 2015 gave an RMSE of 24.3% utilizing both old ALS data and recent DP data, 26.0% for old ALS only and 24.9% for recent DP only. If information about management actions were assumed available, combining old ALS and recent DP gave RMSE of 23.0%, only ALS 23.3% and only DP 23.8%. Numéro de notice : A2021-604 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1080/02827581.2021.1936153 En ligne : https://doi.org/10.1080/02827581.2021.1936153 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98333
in Scandinavian journal of forest research > vol 36 n° 5 [01/07/2021] . - pp 401 - 407[article]Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors / Svetlana Saarela in Forest ecosystems, vol 7 (2020)
[article]
Titre : Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors Type de document : Article/Communication Auteurs : Svetlana Saarela, Auteur ; André Wästlund, Auteur ; Emma Hölmstrom, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 43 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse aérienne
[Termes IGN] carte thématique
[Termes IGN] données allométriques
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur de modèle
[Termes IGN] inférence statistique
[Termes IGN] modèle d'incertitude
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle non linéaire
[Termes IGN] semis de points
[Termes IGN] SuèdeRésumé : (auteur) Background: The increasing availability of remotely sensed data has recently challenged the traditional way of performing forest inventories, and induced an interest in model-based inference. Like traditional design-based inference, model-based inference allows for regional estimates of totals and means, but in addition for wall-to-wall mapping of forest characteristics. Recently Light Detection and Ranging (LiDAR)-based maps of forest attributes have been developed in many countries and been well received by users due to their accurate spatial representation of forest resources. However, the correspondence between such mapping and model-based inference is seldom appreciated. In this study, we applied hierarchical model-based inference to produce aboveground biomass maps as well as maps of the corresponding prediction uncertainties with the same spatial resolution. Further, an estimator of mean biomass at regional level, and its uncertainty, was developed to demonstrate how mapping and regional level assessment can be combined within the framework of model-based inference.
Results: Through a new version of hierarchical model-based estimation, allowing models to be nonlinear, we accounted for uncertainties in both the individual tree-level biomass models and the models linking plot level biomass predictions with LiDAR metrics. In a 5005 km2 large study area in south-central Sweden the predicted aboveground biomass at the level of 18 m ×18 m map units was found to range between 9 and 447 Mg ·ha−1. The corresponding root mean square errors ranged between 10 and 162 Mg ·ha−1. For the entire study region, the mean aboveground biomass was 55 Mg ·ha−1 and the corresponding relative root mean square error 8%. At this level 75% of the mean square error was due to the uncertainty associated with tree-level models.
Conclusions: Through the proposed method it is possible to link mapping and estimation within the framework of model-based inference. Uncertainties in both tree-level biomass models and models linking plot level biomass with LiDAR data are accounted for, both for the uncertainty maps and the overall estimates. The development of hierarchical model-based inference to handle nonlinear models was an important prerequisite for the study.Numéro de notice : A2020-814 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s40663-020-00245-0 Date de publication en ligne : 03/07/2020 En ligne : https://doi.org/10.1186/s40663-020-00245-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96987
in Forest ecosystems > vol 7 (2020) . - n° 43[article]