Détail de l'auteur
Auteur Aviram Borko |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Stochastic model reliability in GNSS baseline solution / Aviram Borko in Journal of geodesy, vol 95 n° 2 (February 2021)
[article]
Titre : Stochastic model reliability in GNSS baseline solution Type de document : Article/Communication Auteurs : Aviram Borko, Auteur ; Gilad Even-Tzur, Auteur Année de publication : 2021 Article en page(s) : n° 20 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données GNSS
[Termes IGN] double différence
[Termes IGN] fiabilité des données
[Termes IGN] ligne de base
[Termes IGN] matrice de covariance
[Termes IGN] modèle stochastique
[Termes IGN] résolution d'ambiguïté
[Termes IGN] test statistique
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) GNSS observations stochastic model influences all subsequent stages of data processing, from the possibility to reach the optimal parameters estimation, to the reliability and quality control of the solution. Nowadays, an uncontrolled use of GNSS stochastic models is common for both data processing and simulation missions, especially in commercial GNSS software packages. As a result, the variance–covariance matrices that are derived in the processing are inadequate and cause incorrect interpretations of the results. A proper method to evaluate the reliability of the stochastic model is needed to reflect the confidence level in statistic testing and simulation mission efforts. In this contribution, a novel method for evaluating the statistical nature of GNSS stochastic model is presented. The method relies on the deterministic nature of the integer ambiguity variable to examine and express the expected multinormal distribution of the double-difference adjustment results. The suggested method was used with a controlled experiment and 24 h of observations data to investigate how the statistical nature of the stochastic model is affected by different baseline lengths. The results indicate that as the baseline length increases, the stochastic model is less predictable and exposed to irregularities in the observation’s precision. Additionally, the reliability of the integer ambiguity resolution success rate (SR) was tested as part of the stochastic model evaluation. The results show a dramatic degradation in the SR prediction level when using an inadequate stochastic model, which suggests using extra caution when handling this parameter unless high-confidence reliable stochastic model is available. Numéro de notice : A2021-136 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01472-1 Date de publication en ligne : 31/01/2021 En ligne : https://doi.org/10.1007/s00190-021-01472-1 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97009
in Journal of geodesy > vol 95 n° 2 (February 2021) . - n° 20[article]