Détail de l'auteur
Auteur Adolfo Lozano-Tello |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)
[article]
Titre : Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control Type de document : Article/Communication Auteurs : Adolfo Lozano-Tello, Auteur ; Marcos Fernández-Sellers, Auteur ; Elia Quirós, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] Estrémadure (Espagne)
[Termes IGN] image Sentinel-MSI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] politique agricole commune
[Termes IGN] réseau neuronal artificiel
[Termes IGN] surface cultivée
[Termes IGN] surveillance agricoleRésumé : (auteur) The early and automatic identification of crops declared by farmers is essential for streamlining European Union Common Agricultural Policy (CAP) payment processes. Currently, field inspections are partial, expensive and entail a considerable delay in the process. Chronological satellite images of cultivated plots can be used so that neural networks can form the model of the declared crop. Once the patterns of a crop are obtained, the correspondence of the declaration with the model of the neural network can be systematically predicted, and can be used for monitoring the CAP. In this article, we propose a learning model with neural networks, using as examples of training the pixels of the cultivated plots from the satellite images over a period of time. We also propose using several years in the training model to generalise the patterns without linking them to the climatic characteristics of a specific year. The article also describes the use of the model in learning the multi-year pattern of tobacco cultivation with very good results. Numéro de notice : A2021-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/22797254.2020.1858723 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/22797254.2020.1858723 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97012
in European journal of remote sensing > vol 54 n° 1 (2021) . - pp 1 - 12[article]