Détail de l'auteur
Auteur Vu Anh Tuan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Optimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam / Vu Anh Tuan in European journal of remote sensing, vol 54 n° 1 (2021)
[article]
Titre : Optimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam Type de document : Article/Communication Auteurs : Vu Anh Tuan, Auteur ; Nguyen Hong Quang, Auteur ; le Thi Thu Hang, Auteur Année de publication : 2021 Article en page(s) : pp 13 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande L
[Termes IGN] cartographie des risques
[Termes IGN] crue
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] inondation
[Termes IGN] Mekong (fleuve)
[Termes IGN] optimisation spatiale
[Termes IGN] surveillance hydrologique
[Termes IGN] Viet NamRésumé : (auteur) One major characteristic of floods is flood extent. Information on this characteristic is indispensable for flood monitoring. Recently, synthetic aperture radar (SAR) data have been increasing in quality and quantity. This allows more flood studies conducted over large areas regardless of cloud and weather conditions and provides advantages including clear surface water classification based on SAR scattering mechanisms for low values (open water) and high values (inundated vegetation, etc.). However, challenges remain due to sources of uncertainties, such as atmospheric disturbances and vegetation masking parts of water surfaces. Therefore, in this study, we aim to optimize flood mapping processes on flooded vegetation that generated high-value pixels based on a SAR scattering mechanism called double bounce that classifies vegetative flooded water in L-band SAR images. This optimization is nearly impossible using Sentinel-1 scenes. Backscattering of time-series Sentinel-1 and ALOS-2 images acquired for the 2018 and 2019 flood season was analysed, thresholded and hybridized for flood mapping of a study site in the Tam Nong district of the Dong Thap Province of Vietnam. We found that the accuracy of SAR flood maps was improved compared to ground truth data when the SAR-extracted vegetative-flooded plains were considered flooded. Numéro de notice : A2021-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/22797254.2020.1859340 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/22797254.2020.1859340 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97015
in European journal of remote sensing > vol 54 n° 1 (2021) . - pp 13 - 28[article]