Détail de l'auteur
Auteur Hang Zhang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation / Hang Zhang in Pattern recognition, vol 121 (January 2022)
[article]
Titre : Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation Type de document : Article/Communication Auteurs : Hang Zhang, Auteur ; Haili Li, Auteur ; Ning Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification floue
[Termes IGN] classification pixellaire
[Termes IGN] filtre
[Termes IGN] segmentation d'image
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Spatial information is often used to enhance the robustness of traditional fuzzy c-means (FCM) clustering algorithms. Although some recently emerged improvements are remarkable, the computational complexity of these algorithms is high, which may lead to lack of practicability. To address this problem, an efficient variant named the fuzzy clustering algorithm with variable multi-pixel fitting spatial information (FCM-VMF) is presented. First, a fuzzy clustering algorithm with multi-pixel fitting spatial information (FCM-MF) is developed. Specifically, by dividing the input image into several filter windows, the spatial information of all pixels in each filter window can be obtained simultaneously by fitting the pixels in its corresponding neighbourhood window, which enormously reduces the computational complexity. However, the FCM-MF may result in the loss of edge information. Therefore, the FCM-VMF integrates a variable window strategy with FCM-MF. In this strategy, to preserve more edge information, the sizes of the filter window and generalized neighbourhood window are adaptively reduced. The experimental results show that FCM-VMF is as effective as some recent algorithms. Notably, the FCM-VMF has extremely high efficiency, which means it has a better prospect of application. Numéro de notice : A2022-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2021.108201 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1016/j.patcog.2021.108201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99564
in Pattern recognition > vol 121 (January 2022) . - n° 108201[article]Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks / Hang Zhang in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
[article]
Titre : Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks Type de document : Article/Communication Auteurs : Hang Zhang, Auteur ; Mingxin Gan, Auteur ; Xi Sun, Auteur Année de publication : 2021 Article en page(s) : n° 10 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] comportement
[Termes IGN] filtrage d'information
[Termes IGN] interprétation (psychologie)
[Termes IGN] mémoire
[Termes IGN] mobilité humaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau social géodépendant
[Termes IGN] tourismeRésumé : (auteur) In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI recommendation methods. In psychological effect-based POI recommendations, the memory-based attenuation of people’s preferences with respect to POIs, e.g., the fact that more attention is paid to POIs that were checked in to recently than those visited earlier, is emphasized. However, the memory effect only reflects the changes in an individual’s check-in trajectory and cannot discover the important POIs that dominate their mobility patterns, which are related to the repeat-visit frequency of an individual at a POI. To solve this problem, in this paper, we developed a novel POI recommendation framework using people’s memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness. First, we used the memory-based preference-attenuation mechanism to emphasize personal psychological effects and memory-based preference evolution in human mobility patterns. Second, we took the visiting frequency of POIs into consideration and introduced the concept of POI stickiness to identify the important POIs that reflect the stable interests of an individual with respect to their mobility behavior decisions. Lastly, we incorporated the influence of both memory-based preferences and POI stickiness into a user-based collaborative filtering framework to improve the performance of POI recommendations. The results of the experiments we conducted on a real LBSN dataset demonstrated that our method outperformed other methods. Numéro de notice : A2021-148 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10010036 Date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/ijgi10010036 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97056
in ISPRS International journal of geo-information > vol 10 n° 1 (January 2021) . - n° 10[article]