Détail de l'auteur
Auteur Benjamin Tardy |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier / Benjamin Tardy (2019)
Titre : Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier Type de document : Thèse/HDR Auteurs : Benjamin Tardy, Auteur ; Jordi Inglada, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2019 Importance : 228 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du doctorat de l'Université Toulouse 3 Paul Sabatier, Spécialité Surfaces et interfaces continentales, HydrologieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aménagement du territoire
[Termes IGN] apprentissage automatique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] croissance urbaine
[Termes IGN] fusion de données
[Termes IGN] historique des données
[Termes IGN] image Formosat/COSMIC
[Termes IGN] image Sentinel-MSI
[Termes IGN] série temporelleIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L'étude des surfaces continentales constitue un enjeu majeur à l'échelle mondiale pour le suivi et la gestion des territoires, notamment en matière de répartition entre l'expansion urbaine, terres agricoles et espaces naturels. Dans ce contexte, les cartes d'OCcupation des Sols (OCS) caractérisant la couverture biophysique des terres émergées sont un atout essentiel pour l'analyse des surfaces continentales. Les algorithmes de classification supervisée permettent, à partir de séries temporelles annuelles d'images satellites et de données de référence, de produire automatiquement la carte de la période correspondante. Cependant, les données de référence sont une information coûteuse à obtenir surtout sur de grandes étendues. En effet, les campagnes de relevés terrain requièrent un fort coût humain, et les bases de données sont associées à de longs délais de mises à jour. De plus, ces données de référence disposent d'une validité limitée à la période correspondante, en raison des changements d'OCS. Ces changements concernent essentiellement l'expansion urbaine au détriment des surfaces naturelles, et les terres agricoles soumises à la rotation des cultures. L'objectif général de la thèse vise à proposer des méthodes de production de cartes d'OCS sans exploiter les données de référence de la période correspondante. Les travaux menés s'appuient sur un historique d'OCS. Cet historique regroupe toutes les informations disponibles pour la zone concernée : cartes d'OCS, séries temporelles, données de référence, modèles de classification, etc. Une première partie des travaux considère que l'historique ne contient qu'une seule période. Ainsi, nous avons proposé un protocole de classification naïve permettant d'exploiter un classifieur déjà entraîné sur une nouvelle période. Les performances obtenues ont montré que cette approche se révèle insuffisante, requérant ainsi des méthodes plus performantes. L'adaptation de domaine permet d'aborder ce type de problématique. Nous avons considéré deux approches : la projection de données via une analyse canonique des corrélations et le transport optimal. Ces deux approches permettent de projeter les données de l'historique afin de réduire les différences avec l'année à traiter. Néanmoins ces approches offrent des résultats équivalents à la classification naïve pour des coûts de production bien plus significatifs. Une seconde partie des travaux considère que l'historique contient au moins deux périodes de données. À partir des cartes supervisées de ces périodes précédentes, nous proposons une approche de mise à jour de la carte la plus récente, en modélisant les transitions des classes d'OCS. Nous avons également proposé l'utilisation d'un classifieur unique entraîné à partir de plusieurs périodes de l'historique. L'objectif de ce classifieur consiste à pouvoir s'adapter aux variations entre les années. Enfin nous avons mis en place des systèmes de vote afin de réaliser une fusion de classifieurs, chacun entraîné sur une période différente de l'historique. Ces systèmes offrent l'avantage d'être toujours plus performants que chaque classifieur individuellement. Nous avons comparé les performances de plusieurs approches allant du simple vote majoritaire à des fusions plus complexes: vote par confiance, vote par probabilités, vote Dempster-Shafer ainsi qu'une inférence bayésienne. Ces approches produisent des performances similaires, mais pour des coûts de production variables. Nous avons expérimenté ces approches sur deux jeux de données, l'un constitué de sept années d'images Formosat-2 et l'autre de trois années d'images Sentinel-2. Le premier offre une très bonne diversité temporelle mais sur une faible emprise spatiale. Inversement, le second couvre une large zone mais pour un historique limité. Nous avons conclu que les approches du classifieur unique ainsi qu'un simple vote majoritaire offrent de bonnes performances pour des faibles coûts indépendamment du jeu de données. Note de contenu : I- Introduction
II- Présentation du problème
III- Propositions de méthodes exploitant un unique domaine Source
IV- Propositions de méthodes exploitant de multiples domaines Source
V- Mise en oeuvre des méthodes pour une production opérationnelle sur de
grandes étendues
VI ConclusionsNuméro de notice : 28509 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Surfaces et interfaces continentales, Hydrologie : Toulouse 3 : 2019 Organisme de stage : CESBIO nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2019TOU30261 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97060