Détail de l'auteur
Auteur Anumoi Mathai |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network / Mengdi Li in Sensors, vol 21 n° 1 (January 2021)
[article]
Titre : Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network Type de document : Article/Communication Auteurs : Mengdi Li, Auteur ; Anumoi Mathai, Auteur ; Stephen L. H. Lau, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 313 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection d'objet
[Termes IGN] fond marin
[Termes IGN] rapport signal sur bruit
[Termes IGN] reconstruction d'image
[Termes IGN] reconstruction d'objetRésumé : (auteur) Due to medium scattering, absorption, and complex light interactions, capturing objects from the underwater environment has always been a difficult task. Single-pixel imaging (SPI) is an efficient imaging approach that can obtain spatial object information under low-light conditions. In this paper, we propose a single-pixel object inspection system for the underwater environment based on compressive sensing super-resolution convolutional neural network (CS-SRCNN). With the CS-SRCNN algorithm, image reconstruction can be achieved with 30% of the total pixels in the image. We also investigate the impact of compression ratios on underwater object SPI reconstruction performance. In addition, we analyzed the effect of peak signal to noise ratio (PSNR) and structural similarity index (SSIM) to determine the image quality of the reconstructed image. Our work is compared to the SPI system and SRCNN method to demonstrate its efficiency in capturing object results from an underwater environment. The PSNR and SSIM of the proposed method have increased to 35.44% and 73.07%, respectively. This work provides new insight into SPI applications and creates a better alternative for underwater optical object imaging to achieve good quality. Numéro de notice : A2021-158 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21010313 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/s21010313 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97073
in Sensors > vol 21 n° 1 (January 2021) . - n° 313[article]