Détail de l'auteur
Auteur Sensen Wu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid / Zhen Dai in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid Type de document : Article/Communication Auteurs : Zhen Dai, Auteur ; Sensen Wu, Auteur ; Yuanyuan Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2248 - 2269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distribution spatiale
[Termes IGN] modèle de régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Geographically weighted regression (GWR) is a classical method of modeling spatially non-stationary relationships. The geographically neural network weighted regression (GNNWR) model solves the problem of the inaccurate construction of spatial weight kernels using a spatially weighted neural network. However, when the spatial distribution of observations is uneven, the spatial proximity expression in the input of GWR and GNNWR models does not fully represent the impact of the whole research space on the estimating point. Therefore, we established a global spatial proximity grid (GSPG) to express the spatial proximity of each estimating point and proposed a spatially weighted convolutional neural network (SWCNN) to extract the relationship between the GSPG and spatial weights. Finally, we proposed a geographically convolutional neural network weighted regression (GCNNWR) model combining SWCNN and ordinary linear regression (OLR) model to estimate spatial non-stationarity. We used two case studies of simulated data and real environment data to demonstrate the advancements of the GCNNWR model. The GCNNWR model achieved higher estimation accuracy and greater predictive power than the OLR, GWR, multi-scale GWR (MGWR), and GNNWR models. Moreover, the GCNNWR model maintained its better stability and accuracy in estimating spatially non-stationary relationships when the distribution of observations was uneven. Numéro de notice : A2022-773 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2100892 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2100892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101954
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2248 - 2269[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships / Sensen Wu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
[article]
Titre : Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships Type de document : Article/Communication Auteurs : Sensen Wu, Auteur ; Zhongyi Wang, Auteur ; Zhenhong Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 582 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal
[Termes IGN] espace-temps
[Termes IGN] estimation par noyau
[Termes IGN] littoral
[Termes IGN] modélisation environnementale
[Termes IGN] raisonnement spatiotemporel
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression linéaireRésumé : (auteur) Geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR) are classic methods for estimating non-stationary relationships. Although these methods have been widely used in geographical modeling and spatiotemporal analysis, they face challenges in adequately expressing space-time proximity and constructing a kernel with optimal weights. This probably results in an insufficient estimation of spatiotemporal non-stationarity. To address complex non-linear interactions between time and space, a spatiotemporal proximity neural network (STPNN) is proposed in this paper to accurately generate space-time distance. A geographically and temporally neural network weighted regression (GTNNWR) model that extends geographically neural network weighted regression (GNNWR) with the proposed STPNN is then developed to effectively model spatiotemporal non-stationary relationships. To examine its performance, we conducted two case studies of simulated datasets and environmental modeling in coastal areas of Zhejiang, China. The GTNNWR model was fully evaluated by comparing with ordinary linear regression (OLR), GWR, GNNWR, and GTWR models. The results demonstrated that GTNNWR not only achieved the best fitting and prediction performance but also exactly quantified spatiotemporal non-stationary relationships. Further, GTNNWR has the potential to handle complex spatiotemporal non-stationarity in various geographical processes and environmental phenomena. Numéro de notice : A2021-167 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1775836 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1080/13658816.2020.1775836 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97102
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 582 - 608[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021031 SL Revue Centre de documentation Revues en salle Disponible