Détail de l'auteur
Auteur Melissa Latella |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds / Elena Belcore in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)
[article]
Titre : Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds Type de document : Article/Communication Auteurs : Elena Belcore, Auteur ; Melissa Latella, Auteur Année de publication : 2022 Article en page(s) : pp 644 - 655 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte de la végétation
[Termes IGN] densité de la végétation
[Termes IGN] détection d'objet
[Termes IGN] forêt ripicole
[Termes IGN] houppier
[Termes IGN] image captée par drone
[Termes IGN] Italie
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) In recent years, numerous directives worldwide have addressed the conservation and restoration of riparian corridors, activities that rely on continuous vegetation mapping to understand its volumetric features and health status. Mapping riparian corridors requires not only fine-scale resolution but also the coverage of relatively large areas. The use of Unmanned Aerial Vehicles (UAV) allows for meeting both conditions, although the cost-effectiveness of their use is highly influenced by the type of sensor mounted on them. Few works have so far investigated the use of photogrammetric sensors for individual tree crown detection, despite being cheaper than the most common Light Detection and Ranging (LiDAR) ones. This work aims to improve the individual crown detection from UAV-photogrammetric datasets in a two fold way. Firstly, the effectiveness of a new approach that has already achieved interesting results in LiDAR applications was tested for photogrammetric point clouds. The test was carried out by comparing the accuracy achieved by the new approach, which is based on the point density features of the analysed dataset, with those related to the more common local maxima and textural methods. The results indicated the potentiality of the density-based method, which achieved accuracy values (0.76F-score) consistent with the traditional methods (0.49–0.80F-score range) but was less affected by under- and over-fitting. Secondly, the potential improvement of working on intra-annual multi-temporal datasets was assessed by applying the density-based approach to seven different scenarios, three of which were constituted by single-epoch datasets and the remaining given by the joining of the others. The F-score increased from 0.67 to 0.76 when passing from single- to multi-epoch datasets, aligning with the accuracy achieved by the new method when applied to LiDAR data. The results demonstrate the potential of multi-temporal acquisitions when performing individual crown detection from photogrammetric data. Numéro de notice : A2022-879 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.267 Date de publication en ligne : 22/03/2022 En ligne : https://doi.org/10.1002/rse2.267 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102193
in Remote sensing in ecology and conservation > vol 8 n° 5 (October 2022) . - pp 644 - 655[article]A density-based algorithm for the detection of individual trees from LiDAR data / Melissa Latella in Remote sensing, Vol 13 n° 2 (January-2 2021)
[article]
Titre : A density-based algorithm for the detection of individual trees from LiDAR data Type de document : Article/Communication Auteurs : Melissa Latella, Auteur ; Fabio Sola, Auteur ; Carlo Camporeal, Auteur Année de publication : 2021 Article en page(s) : n° 322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] comptage
[Termes IGN] densité de la végétation
[Termes IGN] détection d'arbres
[Termes IGN] distribution spatiale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt de feuillus
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] semis de points
[Termes IGN] sous-étageRésumé : (auteur) Nowadays, LiDAR is widely used for individual tree detection, usually providing higher accuracy in coniferous stands than in deciduous ones, where the rounded-crown, the presence of understory vegetation, and the random spatial tree distribution may affect the identification algorithms. In this work, we propose a novel algorithm that aims to overcome these difficulties and yield the coordinates and the height of the individual trees on the basis of the point density features of the input point cloud. The algorithm was tested on twelve deciduous areas, assessing its performance on both regular-patterned plantations and stands with randomly distributed trees. For all cases, the algorithm provides high accuracy tree count (F-score > 0.7) and satisfying stem locations (position error around 1.0 m). In comparison to other common tools, the algorithm is weakly sensitive to the parameter setup and can be applied with little knowledge of the study site, thus reducing the effort and cost of field campaigns. Furthermore, it demonstrates to require just 2 points·m−2 as minimum point density, allowing for the analysis of low-density point clouds. Despite its simplicity, it may set the basis for more complex tools, such as those for crown segmentation or biomass computation, with potential applications in forest modeling and management. Numéro de notice : A2021-196 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13020322 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.3390/rs13020322 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97146
in Remote sensing > Vol 13 n° 2 (January-2 2021) . - n° 322[article]