Détail de l'auteur
Auteur Yan Sun |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data Type de document : Article/Communication Auteurs : Xiao-Ming Li, Auteur ; Yan Sun, Auteur ; Qiang Zhang, Auteur Année de publication : 2021 Article en page(s) : pp 3040 - 3053 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Arctique, océan
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] glace de mer
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] polarisation croisée
[Termes IGN] rétrodiffusion
[Termes IGN] texture d'imageRésumé : (auteur) In this article, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization [vertical–horizontal (VH) or horizontal–vertical (HV)] data in extra-wide (EW) swath mode based on the support vector machine (SVM) method. The classification basis includes the S1 radar backscatter and texture features, which are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e., entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparisons based on a few cases show good agreements between the synthetic aperture radar (SAR)-derived sea ice cover using the proposed method and visual inspections, of which the accuracy reaches approximately 90%–95%. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of the extracted sea ice cover by using S1 data is more than 80%. Numéro de notice : A2021-284 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007789 Date de publication en ligne : 20/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007789 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97392
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3040 - 3053[article]Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice / Yan Sun in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice Type de document : Article/Communication Auteurs : Yan Sun, Auteur ; Xiao-Ming Li, Auteur Année de publication : 2021 Article en page(s) : pp 2116 - 2131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Austral (océan)
[Termes IGN] bruit thermique
[Termes IGN] étalonnage radiométrique
[Termes IGN] filtrage du bruit
[Termes IGN] glace de mer
[Termes IGN] image Sentinel-SAR
[Termes IGN] image TOPSAR
[Termes IGN] polarisation croisée
[Termes IGN] rapport signal sur bruitRésumé : (Auteur) Sentinel-1 (S1) extra-wide (EW) swath data in cross-polarization (horizontal–vertical, HV or vertical–horizontal, VH) are strongly affected by the scalloping effect and thermal noise, particularly over areas with weak backscattered signals, such as sea surfaces. Although noise vectors in both the azimuth and range directions are provided in the standard S1 EW data for subtraction, the residual thermal noise still significantly affects sea ice detection by the EW data. In this article, we improve the denoising method developed in previous studies to remove the additive noise for the S1 EW data in cross-polarization. Furthermore, we propose a new method for eliminating the residual noise (i.e., multiplicative noise) at the subswath boundaries of the EW data, which cannot be well processed by simply subtracting the reconstructed 2-D noise field. The proposed method of removing both the additive and multiplicative noise was applied to EW HV-polarized images processed using different Instrument Processing Facility (IPF) versions. The results suggest that the proposed algorithm significantly improves the quality of EW HV-polarized images under various sea ice conditions and sea states in the marginal ice zone (MIZ) of the Arctic. This is of great support for the utilization of cross-polarization synthetic aperture radar (SAR) images in wide swaths for intensive sea ice monitoring in polar regions. Numéro de notice : A2021-214 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3005831 Date de publication en ligne : 09/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3005831 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97202
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2116 - 2131[article]