Détail de l'auteur
Auteur David P. S. Bekaert |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Cluster-based empirical tropospheric corrections applied to InSAR time series analysis / Kyle Dennis Murray in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Cluster-based empirical tropospheric corrections applied to InSAR time series analysis Type de document : Article/Communication Auteurs : Kyle Dennis Murray, Auteur ; Rowena B. Lohman, Auteur ; David P. S. Bekaert, Auteur Année de publication : 2021 Article en page(s) : pp 2204 - 2212 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bruit atmosphérique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] déformation de la croute terrestre
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] Mexique
[Termes IGN] retard troposphérique
[Termes IGN] série temporelleRésumé : (Auteur) Interferometric synthetic aperture radar (InSAR) allows for mapping of crustal deformation on land with high spatial resolution and precision in areas with high signal-to-noise ratios. Efforts to obtain precise displacement time series globally, however, are severely limited by radar path delays within the troposphere. The tropospheric delay is integrated along the full path length between the ground and the satellite, resulting in correlations between the interferometric phase and elevation that can vary dramatically in both space and time. We evaluate the performance of spatially variable, empirical removal of phase-elevation dependence within SAR interferograms through the use of the K -means clustering algorithm. We apply this method to both synthetic test data, as well as to C-band Sentinel-1a/b time series acquired over a large area in south-central Mexico along the Pacific coast and inland—an area with a large elevation gradient that is of particular interest to researchers studying tectonic- and anthropogenic-related deformation. We show that the clustering algorithm is able to identify cases where tropospheric properties vary across topographic divides, reducing total root mean square (rms) by an average of 50%, as opposed to a spatially constant phase-elevation correction, which has insignificant error reduction. Our approach also reduces tropospheric noise while preserving test signals in synthetic examples. Finally, we show the average standard deviation of the residuals from the best-fit linear rate decreases from approximately 3 to 1.5 cm, which corresponds to a change in the error on the best-fit linear rate from 0.94 to 0.63 cm/yr. Numéro de notice : A2021-215 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003271 Date de publication en ligne : 30/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003271 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97204
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2204 - 2212[article]