Détail de l'auteur
Auteur Jianwen Hu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Pan-sharpening via multiscale dynamic convolutional neural network / Jianwen Hu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Pan-sharpening via multiscale dynamic convolutional neural network Type de document : Article/Communication Auteurs : Jianwen Hu, Auteur ; Pei Hu, Auteur ; Xudong Kang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2231 - 2244 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données multiéchelles
[Termes IGN] image Geoeye
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] reconstruction d'imageRésumé : (Auteur) Pan-sharpening is an effective method to obtain high-resolution multispectral images by fusing panchromatic (PAN) images with fine spatial structure and low-resolution multispectral images with rich spectral information. In this article, a multiscale pan-sharpening method based on dynamic convolutional neural network is proposed. The filters in dynamic convolution are generated dynamically and locally by the filter generation network which is different from the standard convolution and strengthens the adaptivity of the network. The dynamic filters are adaptively changed according to the input images. The proposed multiscale dynamic convolutions extract detail feature of PAN image at different scales. Multiscale network structure is beneficial to obtain effective detail features. The weights obtained by the weight generation network are used to adjust the relationship among the detail features in each scale. The GeoEye-1, QuickBird, and WorldView-3 data are used to evaluate the performance of the proposed method. Compared with the widely used state-of-the-art pan-sharpening approaches, the experimental results demonstrate the superiority of the proposed method in terms of both objective quality indexes and visual performance. Numéro de notice : A2021-216 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007884 Date de publication en ligne : 16/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007884 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97206
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2231 - 2244[article]