Détail de l'auteur
Auteur Lingda Wu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction / Xiaorui Song in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
[article]
Titre : Detection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction Type de document : Article/Communication Auteurs : Xiaorui Song, Auteur ; Ling Zou, Auteur ; Lingda Wu, Auteur Année de publication : 2021 Article en page(s) : pp 2365 - 2377 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection de cible
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image à basse résolution
[Termes IGN] image hyperspectrale
[Termes IGN] méthode robuste
[Termes IGN] précision infrapixellaireRésumé : (Auteur) The low spatial resolution associated with imaging spectrometers has caused subpixel target detection to become a special problem in hyperspectral image (HSI) processing that poses considerable challenges. In subpixel target detection, the size of the target is smaller than that of a pixel, making the spatial information of the target almost useless so that a detection algorithm must rely on the spectral information of the image. To address this problem, this article proposes a subpixel target detection algorithm for hyperspectral remote sensing imagery based on background endmember extraction. First, we propose a background endmember extraction algorithm based on robust nonnegative dictionary learning to obtain the background endmember spectrum of the image. Next, we construct a hyperspectral subpixel target detector based on pixel reconstruction (HSPRD) to perform pixel-by-pixel target detection on the image to be tested using the background endmember spectral matrix and the spectra of known ground targets. Finally, the subpixel target detection results are obtained. The experimental results show that, compared with other existing subpixel target detection methods, the algorithm proposed here can provide the optimum target detection results for both synthetic and real-world data sets. Numéro de notice : A2021-217 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1109/TGRS.2020.3002461 Date de publication en ligne : 24/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002461 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97209
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2365 - 2377[article]