Détail de l'auteur
Auteur Melahat Er |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Integration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) / Hakan Nefeslioglu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
[article]
Titre : Integration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) Type de document : Article/Communication Auteurs : Hakan Nefeslioglu, Auteur ; Beste Tavus, Auteur ; Melahat Er, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aléa
[Termes IGN] analyse de sensibilité
[Termes IGN] carte géomorphologique
[Termes IGN] cartographie des risques
[Termes IGN] classification par réseau neuronal
[Termes IGN] effondrement de terrain
[Termes IGN] grotte
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] itinéraire
[Termes IGN] surveillance géologique
[Termes IGN] train à grande vitesse
[Termes IGN] Turquie
[Termes IGN] voie ferrée
[Termes IGN] vulnérabilitéRésumé : (auteur) Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019-2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions. Numéro de notice : A2021-232 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10030119 Date de publication en ligne : 27/02/2021 En ligne : https://doi.org/10.3390/ijgi10030119 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97226
in ISPRS International journal of geo-information > vol 10 n° 3 (March 2021) . - n° 119[article]