Détail de l'auteur
Auteur Sara Khanbani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (May 2021)
[article]
Titre : A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm Type de document : Article/Communication Auteurs : Sara Khanbani, Auteur ; Ali Mohammadzadeh, Auteur ; Milad Janalipour, Auteur Année de publication : 2021 Article en page(s) : pp 89 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] algorithme génétique
[Termes IGN] changement temporel
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] coût
[Termes IGN] détection de changement
[Termes IGN] seuillageRésumé : (auteur) Change Detection (CD) problem from remotely sensed images is a popular topic among researchers. Because of the diversity in the problem of change detection and the complexity of the study areas it cannot be claimed that there is an appropriate and prevalent algorithm which is more effective for different types of the case study. As a fundamental investigation, it is critical to recognize the weaknesses of the state of artworks in change detection. Also, those examined weaknesses have to be improved aptly to develop a new strong method. This paper presents a thresholding algorithm improved by the Genetic Algorithm (GA) in CD problems, which focuses on minimizing a novel cost function. The suggested cost function can be adopted for local and global change variations in difference images without any prior assumptions. The presented algorithm was tested on two data sets (i.e., Alaska region and Uremia Lake) to validate its effectiveness. Experimental results demonstrated that the proposed algorithm in this work has improved the accuracy of change detection (changed pixel accuracy term) in the Alaska region about 8%–12% and also in Uremia Lake approximately between 8%–13% in comparison with other conventional methods including Fuzzy C- Means (FCM), Otsu thresholding, K-Means, and K-Medoid. Numéro de notice : A2021-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00323-6 Date de publication en ligne : 22/06/2020 En ligne : https://doi.org/10.1007/s12518-020-00323-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97246
in Applied geomatics > vol 13 n° 1 (May 2021) . - pp 89 - 105[article]