Détail de l'auteur
Auteur Wenfu Wu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatio-temporal-spectral observation model for urban remote sensing / Zhenfeng Shao in Geo-spatial Information Science, vol 24 n° 3 (July 2021)
[article]
Titre : Spatio-temporal-spectral observation model for urban remote sensing Type de document : Article/Communication Auteurs : Zhenfeng Shao, Auteur ; Wenfu Wu, Auteur ; Deren Li, Auteur Année de publication : 2021 Article en page(s) : pp 372 - 386 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] biomasse aérienne
[Termes IGN] cartographie des risques
[Termes IGN] complexité
[Termes IGN] fusion d'images
[Termes IGN] image satellite
[Termes IGN] inondation
[Termes IGN] modèle mathématique
[Termes IGN] scène urbaine
[Termes IGN] surface imperméable
[Termes IGN] zone urbaineMots-clés libres : spatio-temporal-spectral observation model Résumé : (auteur) Taking cities as objects being observed, urban remote sensing is an important branch of remote sensing. Given the complexity of the urban scenes, urban remote sensing observation requires data with a high temporal resolution, high spatial resolution, and high spectral resolution. To the best of our knowledge, however, no satellite owns all the above characteristics. Thus, it is necessary to coordinate data from existing remote sensing satellites to meet the needs of urban observation. In this study, we abstracted the urban remote sensing observation process and proposed an urban spatio-temporal-spectral observation model, filling the gap of no existing urban remote sensing framework. In this study, we present four applications to elaborate on the specific applications of the proposed model: 1) a spatio-temporal fusion model for synthesizing ideal data, 2) a spatio-spectral observation model for urban vegetation biomass estimation, 3) a temporal-spectral observation model for urban flood mapping, and 4) a spatio-temporal-spectral model for impervious surface extraction. We believe that the proposed model, although in a conceptual stage, can largely benefit urban observation by providing a new data fusion paradigm. Numéro de notice : A2021-722 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/10095020.2020.1864232 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1080/10095020.2020.1864232 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98642
in Geo-spatial Information Science > vol 24 n° 3 (July 2021) . - pp 372 - 386[article]Extraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
[article]
Titre : Extraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image Type de document : Article/Communication Auteurs : Wenfu Wu, Auteur ; Jiahua Teng, Auteur ; Qimin Cheng, Auteur ; Songjing Guo, Auteur Année de publication : 2021 Article en page(s) : pp 161-170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chatoiement
[Termes IGN] cohérence (physique)
[Termes IGN] cohérence temporelle
[Termes IGN] extraction automatique
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] série temporelle
[Termes IGN] surface imperméableRésumé : (Auteur) The continuous increasing of impervious surface (IS) hinders the sustainable development of cities. Using optical images alone to extract IS is usually limited by weather, which obliges us to develop new data sources. The obvious differences between natural and artificial targets in interferometric synthetic-aperture radar coherence images have attracted the attention of researchers. A few studies have attempted to use coherence images to extract IS—mostly single-temporal coherence images, which are affected by de-coherence factors. And due to speckle, the results are rather fragmented. In this study, we used time-series coherence images and introduced multi-resolution segmentation as a postprocessing step to extract IS. From our experiments, the results from the proposed method were more complete and achieved considerable accuracy, confirming the potential of time-series coherence images for extracting IS. Numéro de notice : A2021-240 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.3.161 Date de publication en ligne : 01/03/2021 En ligne : https://doi.org/10.14358/PERS.87.3.161 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97264
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 3 (March 2021) . - pp 161-170[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021031 SL Revue Centre de documentation Revues en salle Disponible