Détail de l'auteur
Auteur Qimin Cheng |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Dynamic linkage between urbanization, electrical power consumption, and suitability analysis using remote sensing and GIS techniques / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Dynamic linkage between urbanization, electrical power consumption, and suitability analysis using remote sensing and GIS techniques Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Qimin Cheng, Auteur ; Fang Luo, Auteur Année de publication : 2022 Article en page(s) : pp 171 - 179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] consommation
[Termes IGN] densité de population
[Termes IGN] éclairage public
[Termes IGN] électricité
[Termes IGN] étalement urbain
[Termes IGN] image DMSP-OLS
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] Pakistan
[Termes IGN] prise de vue nocturne
[Termes IGN] urbanisationRésumé : (auteur) This article proposes an estimation method for assessing urban sprawl using multispectral remote sensing data: SNPP-VIIRS, DMSP/OLS, Landsat 5-TM, and Landsat 8-OLI. This study focuses on the impacts of human activities, in terms of increased electrical-power consumption (EPC) due to urbanization. For this purpose, night-time light data are used to measure the EPC growth from 2000 to 2020. We also perform a suitability analysis using geographic information-systems techniques to propose a new urban town in Lahore to mitigate urbanization and EPC increase. We found an overall increase of 33% in urban area and an EPC increase of 21.6% in the last two decades. We also find that the best proposed site for the new urban town is in the northwest of Lahore. Numéro de notice : A2022-201 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00026R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.21-00026R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100004
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 171 - 179[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Review of spectral indices for urban remote sensing / Akib Javed in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)
[article]
Titre : Review of spectral indices for urban remote sensing Type de document : Article/Communication Auteurs : Akib Javed, Auteur ; Qimin Cheng, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 513 - 524 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] classification non dirigée
[Termes IGN] détection du bâti
[Termes IGN] indice de détection
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] surface imperméableRésumé : (Auteur) Urban spectral indices have made promising improvements in the last two decades in urban land use land cover studies through mapping, estimation, change detection, time-series analyzing, urban dynamics, monitoring, modeling, and so on. Remote sensing spectral indices are unsupervised, unbiased, rapid, scalable, and quantitative in information extraction. Hence, we aimed to summarize the most relevant urban spectral indices by focusing on multispectral, thermal, and nighttime lights indices. We use the search terms "urban index", "built-up index", "normalized difference built-up area (NDBI )", "impervious surface index", and "spectral urban index" to collect relevant literature from the "Web of Science Core Collection" database. We found that all urban spectral indices developed since 2003, except NDBI. This review will help understand the applications of urban spectral indices, the selection of indices based on available spectral bands, and their merits and demerits. Numéro de notice : A2021-572 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.7.513 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.14358/PERS.87.7.513 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98167
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 7 (July 2021) . - pp 513 - 524[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021071 SL Revue Centre de documentation Revues en salle Disponible Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery / Neema Nicodemus Lyimo in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
[article]
Titre : Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery Type de document : Article/Communication Auteurs : Neema Nicodemus Lyimo, Auteur ; Fang Luo, Auteur ; Qimin Cheng, Auteur ; Hao Peng, Auteur Année de publication : 2021 Article en page(s) : pp 339-348 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'images
[Termes IGN] distance euclidienne
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] données ouvertes
[Termes IGN] image Landsat
[Termes IGN] incertitude des données
[Termes IGN] jeu de données localisées
[Termes IGN] qualité des données
[Termes IGN] système à base de connaissances
[Termes IGN] zone urbaineRésumé : (Auteur) Quality assessment of training samples collected from heterogeneous sources has received little attention in the existing literature. Inspired by Euclidean spectral distance metrics, this article derives three quality measures for modeling uncertainty in spectral information of open-source heterogeneous training samples for classification with Landsat imagery. We prepared eight test case data sets from volunteered geographic information and open government data sources to assess the proposed measures. The data sets have significant variations in quality, quantity, and data type. A correlation analysis verifies that the proposed measures can successfully rank the quality of heterogeneous training data sets prior to the image classification task. In this era of big data, pre-classification quality assessment measures empower research scientists to select suitable data sets for classification tasks from available open data sources. Research findings prove the versatility of the Euclidean spectral distance function to develop quality metrics for assessing open-source training data sets with varying characteristics for urban area classification. Numéro de notice : A2021-366 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.5.339 Date de publication en ligne : 01/05/2021 En ligne : https://doi.org/10.14358/PERS.87.5.339 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97695
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 5 (May 2021) . - pp 339-348[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021051 SL Revue Centre de documentation Revues en salle Disponible Scene classification of remotely sensed images via densely connected convolutional neural networks and an ensemble classifier / Qimin Cheng in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
[article]
Titre : Scene classification of remotely sensed images via densely connected convolutional neural networks and an ensemble classifier Type de document : Article/Communication Auteurs : Qimin Cheng, Auteur ; Yuan Xu, Auteur ; Peng Fu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 295-308 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] orthoimage
[Termes IGN] scèneRésumé : (Auteur) Deep learning techniques, especially convolutional neural networks, have boosted performance in analyzing and understanding remotely sensed images to a great extent. However, existing scene-classification methods generally neglect local and spatial information that is vital to scene classification of remotely sensed images. In this study, a method of scene classification for remotely sensed images based on pretrained densely connected convolutional neural networks combined with an ensemble classifier is proposed to tackle the under-utilization of local and spatial information for image classification. Specifically, we first exploit the pretrained DenseNet and fine-tuned it to release its potential in remote-sensing image feature representation. Second, a spatial-pyramid structure and an improved Fisher-vector coding strategy are leveraged to further strengthen representation capability and the robustness of the feature map captured from convolutional layers. Then we integrate an ensemble classifier in our network architecture considering that lower attention to feature descriptors. Extensive experiments are conducted, and the proposed method achieves superior performance on UC Merced, AID, and NWPU-RESISC45 data sets. Numéro de notice : A2021-334 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.3.295 Date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.14358/PERS.87.3.295 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97533
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 4 (April 2021) . - pp 295-308[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021041 SL Revue Centre de documentation Revues en salle Disponible Extraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
[article]
Titre : Extraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image Type de document : Article/Communication Auteurs : Wenfu Wu, Auteur ; Jiahua Teng, Auteur ; Qimin Cheng, Auteur ; Songjing Guo, Auteur Année de publication : 2021 Article en page(s) : pp 161-170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chatoiement
[Termes IGN] cohérence (physique)
[Termes IGN] cohérence temporelle
[Termes IGN] extraction automatique
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] série temporelle
[Termes IGN] surface imperméableRésumé : (Auteur) The continuous increasing of impervious surface (IS) hinders the sustainable development of cities. Using optical images alone to extract IS is usually limited by weather, which obliges us to develop new data sources. The obvious differences between natural and artificial targets in interferometric synthetic-aperture radar coherence images have attracted the attention of researchers. A few studies have attempted to use coherence images to extract IS—mostly single-temporal coherence images, which are affected by de-coherence factors. And due to speckle, the results are rather fragmented. In this study, we used time-series coherence images and introduced multi-resolution segmentation as a postprocessing step to extract IS. From our experiments, the results from the proposed method were more complete and achieved considerable accuracy, confirming the potential of time-series coherence images for extracting IS. Numéro de notice : A2021-240 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.3.161 Date de publication en ligne : 01/03/2021 En ligne : https://doi.org/10.14358/PERS.87.3.161 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97264
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 3 (March 2021) . - pp 161-170[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021031 SL Revue Centre de documentation Revues en salle Disponible