Détail de l'auteur
Auteur Shuai Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : AI based robot safe learning and control Type de document : Monographie Auteurs : Xuefeng Zhou, Auteur ; Shuai Li, Auteur ; et al., Auteur Editeur : Springer Nature Année de publication : 2020 Importance : 127 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-981-1555039-- Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal récurrent
[Termes IGN] robotique
[Termes IGN] sécurité
[Termes IGN] système de contrôle
[Termes IGN] vitesse angulaireRésumé : (éditeur) This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities. Note de contenu : 1- Adaptive Jacobian based trajectory tracking for redundant manipulators with model uncertainties in repetitive tasks
2- RNN based trajectory control for manipulators with uncertain kinematic parameters
3- RNN based adaptive compliance control for robots with model uncertainties
4- Deep RNN based obstacle avoidance control for redundant manipulators
5- Optimization-based compliant control for manipulators under dynamic obstacle constraints
6- RNN for motion-force control of redundant manipulators with optimal joint torqueNuméro de notice : 28518 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE Nature : Monographie DOI : sans En ligne : https://directory.doabooks.org/handle/20.500.12854/32049 Format de la ressource électronique : url Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97304