Détail de l'auteur
Auteur Laxmi Narayana Eeti |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
[article]
Titre : Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 1820 - 1837 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] réseau neuronal profond
[Termes IGN] Rotation Forest classificationRésumé : (auteur) Decision tree-based Rotation Forest could generate satisfactory but lower classification accuracy for a given training sample set and image data, owing to the inherent disadvantages in decision trees, namely myopic, replication and fragmentation problem. To improve performance of Rotation Forest technique, we propose to utilize two-hidden-layered-feedforward neural network as base classifier instead of decision tree. We examine the classification performance of proposed model under two situations, namely when free network parameters are maintained the same across all ensemble components and otherwise. The proposed model, where each component is initialized with different pair of initial weights and bias, performs better than decision tree-based Rotation Forest on three different Hyperspectral sensor datasets – AVIRIS, ROSIS and Hyperion. Improvements in classification accuracy are above 2% and up to 3% depending upon dataset. Also, the proposed model achieves improvement in accuracy over Random Forest in the range 4.2–8.8%. Numéro de notice : A2021-581 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678680 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678680 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98193
in Geocarto international > vol 36 n° 16 [01/09/2021] . - pp 1820 - 1837[article]Anti-cross validation technique for constructing and boosting random subspace neural network ensembles for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 6 ([01/04/2021])
[article]
Titre : Anti-cross validation technique for constructing and boosting random subspace neural network ensembles for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 676 - 697 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données multisources
[Termes IGN] image hyperspectrale
[Termes IGN] jeu de données
[Termes IGN] précision de la classificationRésumé : (Auteur) Achieving high classification accuracy is vital in reliable information extraction from images. Single classifiers and existing ensemble methods suffer from data dimensionality, insufficient ground truth information and lack in defining optimal feature selection. This article presents a novel idea for constructing component classifiers that boost random subspace ensemble method in improving its classification performance. It is achieved through sub-optimal training of component classifiers through interference in training process during validation error evaluation. The new approach allows to enforce different class errors among component classifiers, besides improving individual class accuracy. This article demonstrates effectiveness of the anti-cross validation approach using three classical hyperspectral Image (HSI) datasets with significant improvement in classification accuracies from 3 to 10% with the proposed approach. Numéro de notice : A2021-292 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618926 Date de publication en ligne : 03/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618926 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97338
in Geocarto international > vol 36 n° 6 [01/04/2021] . - pp 676 - 697[article]