Détail de l'auteur
Auteur Hélène Rouillon |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Analyse automatique du couvert végétal pour la gestion du risque végétation en milieu ferroviaire à partir d'imagerie aérienne / Hélène Rouillon (2020)
Titre : Analyse automatique du couvert végétal pour la gestion du risque végétation en milieu ferroviaire à partir d'imagerie aérienne Type de document : Mémoire Auteurs : Hélène Rouillon, Auteur Editeur : Strasbourg : Institut National des Sciences Appliquées INSA Strasbourg Année de publication : 2020 Importance : 93 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire de fin d'études d'Ingénieur INSA, spécialité TopographieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte de la végétation
[Termes IGN] classification orientée objet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couvert végétal
[Termes IGN] extraction de la végétation
[Termes IGN] image aérienne
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthophotographie
[Termes IGN] réseau ferroviaire
[Termes IGN] segmentation d'image
[Termes IGN] système d'information géographiqueIndex. décimale : INSAS Mémoires d'ingénieur de l'INSA Strasbourg - Topographie, ex ENSAIS Résumé : (auteur) La végétation et les risques qu’elle peut comporter pour les infrastructures ferroviaires et leurs usagers constituent un enjeu majeur pour SNCF Réseau. Aujourd’hui, l’entreprise ferroviaire souhaite connaître et maîtriser ce risque végétation. L’objet de ce PFE est l’analyse automatique du couvert végétal en milieu ferroviaire à partir d’imagerie aérienne RGB acquise par drone, hélicoptère ou avion. Pour répondre à cette problématique, un réseau de neurones destiné à la segmentation sémantique des images est mis en œuvre. En effet, une fois bien entraînés, les réseaux de neurones, par leur capacité d’apprentissage, sont en mesure de classifier efficacement toute nouvelle image. Trois classes ont été définies en fonction des risques que pouvaient présenter la végétation : « arbres », « reste de la végétation » et « non-végétation ». Une chaîne de traitement complète des données a été proposée permettant, sur la base de ces images, une cartographie SIG de la végétation. Cette connaissance, aisément déployable sur des lignes entières, doit permettre au mainteneur de cibler les zones prioritaires et d’optimiser ses plans d’élagages. Note de contenu : Introduction
1- Etude préalable au développement de la solution
2- Le réseau de neurones SegNet pour le traitement d’images d’observation de la Terre et la base de données
3- Optimisation du traitement des données
ConclusionNuméro de notice : 28529 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire ingénieur INSAS Organisme de stage : Altametris DOI : sans En ligne : http://eprints2.insa-strasbourg.fr/4133/ Format de la ressource électronique : url Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97346