Détail de l'auteur
Auteur Vahid Nasiri
Commentaire :
doctorant Univ. de Tehéran 2018-2019
|
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) / Vahid Nasiri in Arabian Journal of Geosciences, vol 15 n° 24 (December 2022)
[article]
Titre : Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Arnaud Le Bris , Auteur ; Ali Asghar Darvishsefat, Auteur ; Fardin Moradi, Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 1759 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] aire protégée
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SARRésumé : (auteur) Considering the importance of accurate and up-to-date land use/cover (LULC) maps and in a situation of fast LULC changes, an accurate mapping of complex landscapes requires real-time high-resolution remote sensed data and powerful classification algorithms. The new ESA Copernicus satellites Sentinel-1 (S-1) and Sentinel-2 (S-2) have contributed to the effective monitoring of the Earth’s surface. This paper aims at assessing the potential of mono-temporal S-1 and S-2 satellite images and three common classification algorithms including maximum likelihood (ML), support vector machine (SVM), and random forest (RF) for LULC classification. The research methodology consists of a sequence of tasks including data collection and preprocessing, the extraction of texture and spectral features, the definition of several feature set configurations, classification, and accuracy assessment. Based on the results, using S-1 data alone leads to quite poor results, even though dual polarimetric C-band and texture features increased the classification accuracy. The S-2 data outperformed the S-1 data in terms of overall and class level accuracies. A combined use of S-1 and S-2 satellite images involving extracted features from both sources led to the best result for identifying all classes. This emphasizes the critical importance of using multi-modal datasets and different features in the LULC classification. Among classification algorithms, the SVM led to the highest accuracies irrespective of the dataset. To sum it up, according to the applied methodology and results, S-1 and S-2 data can provide optimal and up-to-date information for LULC mapping using non-parametric classifiers as SVM or RF. Numéro de notice : A2022-699 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12517-022-11035-z Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1007/s12517-022-11035-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102253
in Arabian Journal of Geosciences > vol 15 n° 24 (December 2022) . - n° 1759[article]The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests / Vahid Nasiri in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
[article]
Titre : The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Seyed Mohammad Moein Sadeghi, Auteur ; Fardin Moradi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] couvert forestier
[Termes IGN] forêt méditerranéenne
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Iran
[Termes IGN] placette d'échantillonnage
[Termes IGN] Quercus (genre)Résumé : (auteur) Forest canopy cover (FCC) is one of the most important forest inventory parameters and plays a critical role in evaluating forest functions. This study examines the potential of integrating Sentinel-1 (S-1) and Sentinel-2 (S-2) data to map FCC in the heterogeneous Mediterranean oak forests of western Iran in different data densities (one-year datasets vs. three-year datasets). This study used very high-resolution satellite images from Google Earth, gridded points, and field inventory plots to generate a reference dataset. Based on it, four FCC classes were defined, namely non-forest, sparse forest (FCC = 1–30%), medium-density forest (FCC = 31–60%), and dense forest (FCC > 60%). In this study, three machine learning (ML) models, including Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART), were used in the Google Earth Engine and their performance was compared for classification. Results showed that the SVM produced the highest accuracy on FCC mapping. The three-year time series increased the ability of all ML models to classify FCC classes, in particular the sparse forest class, which was not distinguished well by the one-year dataset. Class-level accuracy assessment results showed a remarkable increase in F-1 scores for sparse forest classification by integrating S-1 and S-2 (10.4% to 18.2% increased for the CART and SVM ML models, respectively). In conclusion, the synergetic use of S-1 and S-2 spectral temporal metrics improved the classification accuracy compared to that obtained using only S-2. The study relied on open data and freely available tools and can be integrated into national monitoring systems of FCC in Mediterranean oak forests of Iran and neighboring countries with similar forest attributes. Numéro de notice : A2022-649 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080423 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.3390/ijgi11080423 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101465
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 423[article]Unmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (Case study: Hyrcanian mixed forest) / Vahid Nasiri in Canadian Journal of Forest Research, Vol 51 n° 7 (July 2021)
[article]
Titre : Unmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (Case study: Hyrcanian mixed forest) Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Ali Asghar Darvishsefat, Auteur ; Hossein Arefi, Auteur ; Marc Pierrot-Deseilligny , Auteur ; Manochehr Namiranian, Auteur ; Arnaud Le Bris , Auteur Année de publication : 2021 Projets : 1-Pas de projet / Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] diamètre des arbres
[Termes IGN] filtre passe-bas
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle numérique de terrain
[Termes IGN] peuplement mélangé
[Termes IGN] segmentationRésumé : (Auteur) Tree height and crown diameter are two common individual tree attributes that can be estimated from Unmanned Aerial Vehicles (UAVs) images thanks to photogrammetry and structure from motion. This research investigates the potential of low-cost UAV aerial images to estimate tree height and crown diameter. Two successful flights were carried out in two different seasons corresponding to leaf-off and leaf-on conditions to generate Digital Terrain Model (DTM) and Digital Surface Model (DSM), which were further employed in calculation of a Canopy Height Model (CHM). The CHM was used to estimate tree height using low pass and local maximum filters, and crown diameter was estimated based on an Invert Watershed Segmentation (IWS) algorithm. UAV-based tree height and crown diameter estimates were validated against field measurements and resulted in 3.22 m (10.1%) and 0.81 m (7.02%) RMSE, respectively. The results showed high agreement between our estimates and field measurements, with R2=0.808 for tree height and R2=0.923 for crown diameter. Generally, the accuracy of the results was considered acceptable and confirmed the usefulness of this approach for estimating tree heights and crown diameter. Numéro de notice : A2021-296 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1139/cjfr-2020-0125 Date de publication en ligne : 26/01/2021 En ligne : https://dx.doi.org/10.1139/cjfr-2020-0125 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97376
in Canadian Journal of Forest Research > Vol 51 n° 7 (July 2021)[article]