Détail de l'auteur
Auteur Juliet Biggs |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network / Nantheera Anantrasirichai in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network Type de document : Article/Communication Auteurs : Nantheera Anantrasirichai, Auteur ; Juliet Biggs, Auteur ; Krisztina Kelevitz, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2940 - 2950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] effet atmosphérique
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] interpolation spatiale
[Termes IGN] matrice
[Termes IGN] optimisation (mathématiques)
[Termes IGN] représentation parcimonieuse
[Termes IGN] Royaume-Uni
[Termes IGN] zone urbaineRésumé : (auteur) The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of nonexpert stakeholders a challenge. Here, we explore the applicability of deep learning approaches by adapting a pretrained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the U.K. where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides, and tunneling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exist to construct a balanced training data set, and the deformation signals are slower and more localized than in previous applications. We propose three enhancement methods to tackle these problems: 1) spatial interpolation with modified matrix completion; 2) a synthetic training data set based on the characteristics of the real U.K. velocity map; and 3) enhanced overwrapping techniques. Using velocity maps spanning 2015–2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides, and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems. Numéro de notice : A2021-283 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-020-00323-6 Date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.1007/s12518-020-00323-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97391
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2940 - 2950[article]