Détail de l'auteur
Auteur Zhijie Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Study on offshore seabed sediment classification based on particle size parameters using XGBoost algorithm / Fengfan Wang in Computers & geosciences, vol 149 (April 2021)
[article]
Titre : Study on offshore seabed sediment classification based on particle size parameters using XGBoost algorithm Type de document : Article/Communication Auteurs : Fengfan Wang, Auteur ; Jia Yu, Auteur ; Zhijie Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 104713 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatiale
[Termes IGN] calcul matriciel
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] diagramme
[Termes IGN] échantillon
[Termes IGN] Extreme Gradient Machine
[Termes IGN] fond marin
[Termes IGN] gravier
[Termes IGN] image à haute résolution
[Termes IGN] sédimentRésumé : (auteur) Folk's textual classification scheme which is widely used for sediment study operates with the proportions of gravel, sand, silt and clay fractions conventionally. However, dealing with data from different sources usually needs to face missing values that may make the classification difficult. To solve this problem and discover other methods of analyzing the scheme, with samples of offshore seabed sediment, a two-stage model was established to predict a sample's class using the XGBoost algorithm as well as the grain size parameters as input features. The final model was evaluated with quantitative performance measures of recall, precision and F1 score, and by comparing sediment texture maps using the predicted and the actual data. The results show that the model performs well on extraction of sediment samples without gravel fraction, and prediction of classes that have independent characteristics of grain size parameters or samples not near the boundaries of classes in the ternary diagram. The predicted sediment texture is close to the actual and could be reliable due to errors with little impact on further applications. It is demonstrated that the model could be an auxiliary or alternative approach to offshore sediment texture mapping, as well as supplementary to the analysis of sedimentary environment. Numéro de notice : A2021-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104713 Date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104713 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97400
in Computers & geosciences > vol 149 (April 2021) . - n° 104713[article]