Détail de l'auteur
Auteur Xiang Que |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Parallel computing for fast spatiotemporal weighted regression / Xiang Que in Computers & geosciences, vol 150 (May 2021)
[article]
Titre : Parallel computing for fast spatiotemporal weighted regression Type de document : Article/Communication Auteurs : Xiang Que, Auteur ; Chao Ma, Auteur ; Xiaogang Ma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 104723 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] calcul matriciel
[Termes IGN] étalonnage de modèle
[Termes IGN] modèle de régression
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] régression géographiquement pondérée
[Termes IGN] traitement parallèleRésumé : (auteur) The Spatiotemporal Weighted Regression (STWR) model is an extension of the Geographically Weighted Regression (GWR) model for exploring the heterogeneity of spatiotemporal processes. A key feature of STWR is that it utilizes the data points observed at previous time stages to make better fit and prediction at the latest time stage. Because the temporal bandwidths and a few other parameters need to be optimized in STWR, the model calibration is computationally intensive. In particular, when the data amount is large, the calibration of STWR becomes heavily time-consuming. For example, with 10,000 points in 10 time stages, it takes about 2307 s for a single-core PC to process the calibration of STWR. Both the distance and the weighted matrix in STWR are memory intensive, which may easily cause memory insufficiency as data amount increases. To improve the efficiency of computing, we developed a parallel computing method for STWR by employing the Message Passing Interface (MPI). A cache in the MPI processing approach was proposed for the calibration routine. Also, a matrix splitting strategy was designed to address the problem of memory insufficiency. We named the overall design as Fast STWR (F-STWR). In the experiment, we tested F-STWR in a High-Performance Computing (HPC) environment with a total number of 204,611 observations in 19 years. The results show that F-STWR can significantly improve STWR's capability of processing large-scale spatiotemporal data. Numéro de notice : A2021-300 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1016/j.cageo.2021.104723 Date de publication en ligne : 05/03/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104723 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97413
in Computers & geosciences > vol 150 (May 2021) . - n° 104723[article]