Détail de l'auteur
Auteur Yee Man Theodora Cho |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Application of digital image processing in automated analysis of insect leaf mines / Yee Man Theodora Cho (2020)
Titre : Application of digital image processing in automated analysis of insect leaf mines Type de document : Thèse/HDR Auteurs : Yee Man Theodora Cho, Auteur Editeur : York [Royaume-Uni] : University of York Année de publication : 2020 Importance : 202 p. Format : 21 x 30 cm Note générale : bibliographie
PhD thesis, Electronic Engineering, University of York, United KingdomLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Acer (genre)
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] Castanea (genre)
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] détection de contours
[Termes IGN] diagnostic foliaire
[Termes IGN] image hyperspectrale
[Termes IGN] insecte nuisible
[Termes IGN] modèle de simulation
[Termes IGN] segmentation d'image
[Termes IGN] seuillage
[Termes IGN] surveillance de la végétation
[Termes IGN] taxinomie
[Termes IGN] traitement d'imageRésumé : (auteur) Automated species identificationhas become a popular alternative to manual classification in the past few decades, as a result of advancement in digital image processing techniques and machine learning algorithms. This project aims to devise a new approach for the detection of leaf mines and fungal spots from digital images, and to investigate the possibility of monitoring the growth of leaf mines. Leaf-mining insects primarily belong to the orders of moths (Lepidoptera), flies (Diptera) and beetles (Coleoptera); or the suborders of sawflies (Symphyta) and wasps (Apocrita). Every spring and summer the larvae of leaf-mining insects feed on leaf tissues until maturity and vacate the mines as adults. As most species of leaf miners attack garden plants or crops, they are generally regarded as pests, despiterarely causing severe long-term detrimental effect on their host plants. Increase in human activities has led to the spread of these invasive species globally in recent years, and the demand for an effective classification system to monitor their distribution is rising consistently. Samples from three species of leaf-mining insects were included in this project: horse chestnut leaf miner (Cameraria ohridella), apple leaf miner (Lyonetia clerkella), and holly leaf miner (Phytomyza ilicis). Leaves with tar spots (Rhytisma acerinum)were also introduced as variations.The proposed method uses image processing techniques such as thresholding, conversion between colour spaces, edge detection, image segmentation,and morphological operations. This project also explores the use of machine learning algorithmsas analytical monitoring and predictive tools, using the growth of C. ohridellaleaf mines as an example. Note de contenu : 1- Introduction
2- Background
3- Digital image processing
4- Automated classification
5- Implementation
6- Data analysis
7- ConclusionNuméro de notice : 28552 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse étrangère Note de thèse : PhD thesis : Electronic Engineering : University of York : 2020 En ligne : https://etheses.whiterose.ac.uk/27749/1/Cho_105036528_Thesis.pdf Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97414