Détail de l'auteur
Auteur M. R. Mosavi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers / N. Orouji in GPS solutions, vol 25 n° 3 (July 2021)
[article]
Titre : A multi-layer perceptron neural network to mitigate the interference of time synchronization attacks in stationary GPS receivers Type de document : Article/Communication Auteurs : N. Orouji, Auteur ; M. R. Mosavi, Auteur Année de publication : 2021 Article en page(s) : Article 84 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] décalage d'horloge
[Termes IGN] horloge du récepteur
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] précision des données
[Termes IGN] récepteur GPS
[Termes IGN] station GPS
[Termes IGN] synchronisationRésumé : (Auteur) Accurate timing is one of the key features of the Global Positioning System (GPS), which is employed in many critical infrastructures. Any imprecise time measurement in GPS-based structures, such as smart power grids, economic activities, and communication towers, can lead to disastrous results. The vulnerability of the stationary GPS receivers to the time synchronization attacks (TSAs) jeopardizes the GPS timing precision and trust level. In the past few years, studies suggested the adoption of estimators to follow the authentic trend of the clock offset information under attack conditions. However, the estimators would lose track of the authentic signal without proper knowledge of the signal characteristics. Therefore, a multi-layer perceptron neural network (MLP NN) is proposed to follow the trend of the data. The main difference between the proposed method and typical estimators is the reliance of the network on the training information consisting of signal features. The proposed MLP NN performance has been evaluated through two real-world datasets and two well-known types of TSA. The root mean square error results exhibit an improvement of at least six times compared to other conventional and state-of-art methods. Numéro de notice : A2021-331 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01124-z Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.1007/s10291-021-01124-z Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97501
in GPS solutions > vol 25 n° 3 (July 2021) . - Article 84[article]