Détail de l'auteur
Auteur Supanut Chaidee |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A Voronoi-based method for land-use optimization using semidefinite programming and gradient descent algorithm / Vorapong Suppakitpaisarn in International journal of geographical information science IJGIS, vol 35 n° 5 (May 2021)
[article]
Titre : A Voronoi-based method for land-use optimization using semidefinite programming and gradient descent algorithm Type de document : Article/Communication Auteurs : Vorapong Suppakitpaisarn, Auteur ; Atthaphon Ariyarit, Auteur ; Supanut Chaidee, Auteur Année de publication : 2021 Article en page(s) : pp 999 - 1031 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme du gradient
[Termes IGN] algorithme génétique
[Termes IGN] benchmark spatial
[Termes IGN] diagramme de Voronoï
[Termes IGN] mode d'occupation du sol
[Termes IGN] Thaïlande
[Termes IGN] utilisation du solRésumé : (Auteur) The land-use optimization involves divisions of land into subregions to obtain spatial configuration of compact subregions and desired connections among them. Computational geometry-based algorithms, such as Voronoi diagram, are known to be efficient and suitable for iterative design processes to achieve land-use optimization. However, such algorithms assume that generating point positions are given as inputs, while we usually do not know the positions in advance. In this study, we propose a method to automatically calculate the suitable point positions. The method uses (1) semidefinite programming to approximate locations while maintaining relative positions among locations; and (2) gradient descent to iteratively update locations subject to area constraints. We apply the proposed framework to a practical case at Chiang Mai University and compare its performance with a benchmark, the differential genetic algorithm. The results show that the proposed method is 28 times faster than the differential genetic algorithm, while the resulting land allocation error is slightly larger than that of the benchmark but still acceptable. Additionally, the output does not contain disconnected areas, as found in all evolutionary computations, and the compactness is almost equal to the maximum possible value. Numéro de notice : A2021-336 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1841203 Date de publication en ligne : 23/11/2020 En ligne : https://doi.org/10.1080/13658816.2020.1841203 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97555
in International journal of geographical information science IJGIS > vol 35 n° 5 (May 2021) . - pp 999 - 1031[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021051 SL Revue Centre de documentation Revues en salle Disponible