Détail de l'auteur
Auteur Seyfeddine Boukhtache |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Système de traitement d’images temps réel dédié à la mesure de champs denses de déplacements et de déformations / Seyfeddine Boukhtache (2020)
Titre : Système de traitement d’images temps réel dédié à la mesure de champs denses de déplacements et de déformations Type de document : Thèse/HDR Auteurs : Seyfeddine Boukhtache, Auteur ; Michel Grédiac, Directeur de thèse ; François Berry, Directeur de thèse Editeur : Clermont-Ferrand : Université Clermont Auvergne Année de publication : 2020 Importance : 169 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de docteur de l'Université Clermont Auvergne, Spécialité Électronique et Architecture de SystèmesLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] déformation de surface
[Termes IGN] effet thermique
[Termes IGN] interpolation linéaire
[Termes IGN] métrologie
[Termes IGN] pixel
[Termes IGN] réseau neuronal convolutif
[Termes IGN] temps réelIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse s’inscrit dans un cadre pluridisciplinaire. Elle traite de la problématique du temps réel et de celle des performances métrologiques en traitement d’images numériques. Elle s'intéresse plus particulièrement à la photomécanique. Il s'agit d'une discipline récente visant à développer et à utiliser au mieux des systèmes de mesure de champs entiers de petits déplacements et de petites déformations en surface de solides soumis à des sollicitations thermomécaniques. La technique utilisée dans cette thèse est la corrélation des images numériques (CIN), qui se trouve être l'une des plus employées dans cette communauté. Elle représente cependant des limitations à savoir un temps de calcul prohibitif et des performances métrologiques améliorables afin d'atteindre celles des capteurs ponctuels classiques comme les jauges de déformation.Ce travail s'appuie sur deux axes d'étude pour relever ce défi. Le premier repose sur l'optimisation de l'interpolation d'images qui est le traitement le plus coûteux dans la CIN. Une accélération est proposée en utilisant une implémentation matérielle parallélisée sur FPGA, tout en tenant compte de la consommation des ressources matérielles et de la précision. La principale conclusion est qu'un seul FPGA (dans les limites technologiques actuelles) ne suffit pas à implémenter l'intégralité de l'algorithme CIN. Un second axe d'étude a donc été proposé. Il vise à développer et à utiliser des réseaux de neurones convolutifs pour tenter d'atteindre à la fois des performances métrologiques meilleures que la CIN et un traitement en temps réel. Cette deuxième étude a montré l'efficacité d'un tel outil pour la mesure des champs de déplacements et de déformations. Elle ouvre de nouvelles perspectives en termes de performances métrologiques et de rapidité des systèmes de mesure de champs. Note de contenu : Introduction générale
1. Traitement sous-pixellique et performances métrologiques
1.1 Les approches à performance sous-pixelique
1.2 Techniques d’interpolation
1.3 Métrologie par vision
1.4 Le cas particulier de mesure métrologique en photomécanique
1.5 Conclusion
2. Implémentation matérielle : précision et ressources matérielles
2.1 Plateformes matérielles
2.2 Réduire la complexité de calcul : techniques d’approximation
2.3 Précision arithmétique
2.4 Processus d’optimisation de la représentation en virgule fixe
2.5 Conclusion
3. FPGA-based architecture for bi-cubic interpolation : the best trade-off between precision and hardware resource consumption
3.1 Introduction
3.2 Bi-cubic interpolation
3.3 Previous studies
3.4 Proposed architecture
3.5 Resource utilization and precision analysis
3.6 Results
3.7 Conclusion
4. Alternatives to bi-cubic interpolation considering FPGA hardware resource consumption
4.1 Introduction
4.2 Bi-cubic interpolation
4.3 Previous works
4.4 Approximation of the cubic kernel with n-piecewise linear functions
4.5 Combining cubic and linear interpolations
4.6 Results
4.7 Conclusion
5. When Deep Learning Meets Digital Image Correlation
5.1 Introduction
5.2 A short primer on deep learning
5.3 A brief review of CNN-based methods for optical flow estimation
5.4 Dataset
5.5 Fine-tuning networks of the literature
5.6 Tailoring FlowNetS to estimate displacement fields
5.7 Spatial resolution and metrological performance indicator
5.8 Assessing the generalization capability
5.9 Computing time
5.10 Conclusion
6. Conclusion générale et perspectives
6.1 Conclusion
6.2 PerspectivesNuméro de notice : 26530 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Électronique et Architecture de Systèmes : Clermont Auvergne : 2020 Organisme de stage : Sigma Clermont nature-HAL : Thèse Date de publication en ligne : 27/03/2021 En ligne : https://tel.archives-ouvertes.fr/tel-03180484/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97561