Détail de l'auteur
Auteur Seth Goodman |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A convolutional neural network approach to predict non‐permissive environments from moderate‐resolution imagery / Seth Goodman in Transactions in GIS, Vol 25 n° 2 (April 2021)
[article]
Titre : A convolutional neural network approach to predict non‐permissive environments from moderate‐resolution imagery Type de document : Article/Communication Auteurs : Seth Goodman, Auteur ; Ariel BenYishay, Auteur ; Daniel Runfola, Auteur Année de publication : 2021 Article en page(s) : pp 674 - 691 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] conflit
[Termes IGN] image Landsat-8
[Termes IGN] implémentation (informatique)
[Termes IGN] Nigéria
[Termes IGN] prédiction
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Convolutional neural networks (CNNs) trained with satellite imagery have been successfully used to generate measures of development indicators, such as poverty, in developing nations. This article explores a CNN‐based approach leveraging Landsat 8 imagery to predict locations of conflict‐related deaths. Using Nigeria as a case study, we use the Armed Conflict Location & Event Data (ACLED) dataset to identify locations of conflict events that did or did not result in a death. Imagery for each location is used as an input to train a CNN to distinguish fatal from non‐fatal events. Using 2014 imagery, we are able to predict the result of conflict events in the following year (2015) with 80% accuracy. While our approach does not replace the need for causal studies into the drivers of conflict death, it provides a low‐cost solution to prediction that requires only publicly available imagery to implement. Findings suggest that the information contained in moderate‐resolution imagery can be used to predict the likelihood of a death due to conflict at a given location in Nigeria the following year, and that CNN‐based methods of estimating development‐related indicators may be effective in applications beyond those explored in the literature. Numéro de notice : A2021-361 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12661 Date de publication en ligne : 13/07/2020 En ligne : https://doi.org/10.1111/tgis.12661 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97625
in Transactions in GIS > Vol 25 n° 2 (April 2021) . - pp 674 - 691[article]