Détail de l'auteur
Auteur Ronald Maj |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides / Yang Yang in IEEE Aerospace and Electronic Systems Magazine, vol 37 n° 2 (February 2022)
[article]
Titre : Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides Type de document : Article/Communication Auteurs : Yang Yang, Auteur ; Ronald Maj, Auteur ; Changyong He , Auteur ; Robert Norman, Auteur ; Emma Kerr, Auteur ; Brett Anthony Carter, Auteur ; Julie Louise Currie, Auteur ; Steve Gower, Auteur Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 6 - 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] atmosphère terrestre
[Termes IGN] éphémérides de satellite
[Termes IGN] International Reference Ionosphere
[Termes IGN] masse d'air
[Termes IGN] modèle atmosphérique
[Termes IGN] orbite basse
[Termes IGN] teneur totale en électronsRésumé : (auteur) Atmospheric mass density (AMD) plays a vital role in the drag calculation for space objects in low Earth orbit. Many empirical AMD models have been developed and used for orbit prediction and efforts continue to improve their accuracy in forecasting high-altitude atmospheric conditions. Previous studies have assessed these models at the height of 200 km to 600 km. In this paper, four state-of-the-art AMD models, i.e., MSISE90, MSISE00, JB2008 and DTM2013 are assessed for their orbit prediction (OP) capabilities by using a new data source of COSMIC satellite ephemerides at an orbital height of ~800 km, where the contribution of ions in the total AMD is more significant. A new testing model was developed by accounting for ion contribution based on the International Reference Ionosphere 2016 model, including many more ion species that are not accounted for in other AMD models. In the assessment, two periods of forty days were chosen in 2014-2015 and 2018-2019, representing solar maximum and minimum periods, respectively, to assess four existing AMD models and the proposed model. Thorough analyses were conducted to compare OP results using different AMD models with precise reference ephemerides of COSMIC satellites and based on various space weather indices. It is shown that the proposed model outperforms all other AMD models in terms of OP errors during the solar maximum period. During solar minimum, the drag acceleration is relatively small for COSMIC satellites. Assessment of all AMD models in the orbit prediction process tends to be contaminated by the remaining uncertainty sources, such as solar radiation pressure. Numéro de notice : A2022-070 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/MAES.2021.3125101 Date de publication en ligne : 20/12/2021 En ligne : https://doi.org/10.1109/MAES.2021.3125101 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99376
in IEEE Aerospace and Electronic Systems Magazine > vol 37 n° 2 (February 2022) . - pp 6 - 22[article]Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides / Yang Yang (2020)
Titre : Comparison of atmospheric mass density models using a new data source: COSMIC satellite ephemerides Type de document : Article/Communication Auteurs : Yang Yang, Auteur ; Ronald Maj, Auteur ; Changyong He , Auteur ; Robert Norman, Auteur ; Emma Kerr, Auteur ; Brett Anthony Carter, Auteur ; Julie Louise Currie, Auteur ; Steve Gower, Auteur Editeur : Washington DC [Etats-Unis] : Earth and Space Science Open Archive ESSOAr Année de publication : 2020 Note générale : bibliographie
Submitted to Space WeatherLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] atmosphère terrestre
[Termes IGN] éphémérides de satellite
[Termes IGN] International Reference Ionosphere
[Termes IGN] masse d'air
[Termes IGN] modèle atmosphérique
[Termes IGN] orbite basseRésumé : (auteur) Atmospheric mass density (AMD) plays a vital role in the drag calculation for space objects in low Earth orbit (LEO). Many empirical AMD models have been developed and used for orbit prediction and efforts continue to improve their accuracy in forecasting high-altitude atmospheric conditions. Previous studies have assessed these models at the height of 200 km to 600 km. A new empirical AMD model, dubbed as the SERC model, was developed by accounting for ion contribution based on the International Reference Ionosphere 2016 model, including many more ions that are not accounted for in other AMD models. This new model has been assessed in orbit prediction by using a new data source of COSMIC satellite ephemerides at the height of 800 km, where the contribution of ions in the total AMD is more significant. More specifically, two periods of forty days were chosen in 2014--2015 and 2018--2019, representing the solar maximum and minimum periods, respectively, to assess the SERC model and four other state-of-the-art AMD models. Thorough analyses were conducted to compare OP results using different AMD models with precise reference ephemerides of COSMIC satellites and based on various space weather indices. It is indicated that the SERC model outperforms all other AMD models in terms of OP errors during the solar maximum period and yields comparable OP results during the solar minimum period. Numéro de notice : P2020-001 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Preprint nature-HAL : Préprint DOI : 10.1002/essoar.10502170.1 Date de publication en ligne : 09/02/2020 En ligne : https://doi.org/10.1002/essoar.10502170.1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97632