Détail de l'auteur
Auteur Jiadi Yin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Decision-level and feature-level integration of remote sensing and geospatial big data for urban land use mapping / Jiadi Yin in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Decision-level and feature-level integration of remote sensing and geospatial big data for urban land use mapping Type de document : Article/Communication Auteurs : Jiadi Yin, Auteur ; Ping Fu, Auteur ; Nicholas A.S. Hamm, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1579 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte d'utilisation du sol
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] données massives
[Termes IGN] image Sentinel-MSI
[Termes IGN] intégration de données
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) Information about urban land use is important for urban planning and sustainable development. The emergence of geospatial big data (GBD), increased the availability of remotely sensed (RS) data and the development of new methods for data integration to provide new opportunities for mapping types of urban land use. However, the modes of RS and GBD integration are diverse due to the differences in data, study areas, classifiers, etc. In this context, this study aims to summarize the main methods of data integration and evaluate them via a case study of urban land use mapping in Hangzhou, China. We first categorized the RS and GBD integration methods into decision-level integration (DI) and feature-level integration (FI) and analyzed their main differences by reviewing the existing literature. The two methods were then applied for mapping urban land use types in Hangzhou city, based on urban parcels derived from the OpenStreetMap (OSM) road network, 10 m Sentinel-2A images, and points of interest (POI). The corresponding classification results were validated quantitatively and qualitatively using the same testing dataset. Finally, we illustrated the advantages and disadvantages of both approaches via bibliographic evidence and quantitative analysis. The results showed that: (1) The visual comparison indicates a generally better performance of DI-based classification than FI-based classification; (2) DI-based urban land use mapping is easy to implement, while FI-based land use mapping enables the mixture of features; (3) DI-based and FI-based methods can be used together to improve urban land use mapping, as they have different performances when classifying different types of land use. This study provides an improved understanding of urban land use mapping in terms of the RS and GBD integration strategy. Numéro de notice : A2021-383 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081579 Date de publication en ligne : 19/04/2021 En ligne : https://doi.org/10.3390/rs13081579 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97634
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1579[article]