Détail de l'auteur
Auteur Pan Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Indoor mapping and modeling by parsing floor plan images / Yijie Wu in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)
[article]
Titre : Indoor mapping and modeling by parsing floor plan images Type de document : Article/Communication Auteurs : Yijie Wu, Auteur ; Jianga Shang, Auteur ; Pan Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1205 - 1231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte d'intérieur
[Termes IGN] chevauchement
[Termes IGN] CityGML
[Termes IGN] construction
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] intégrité topologique
[Termes IGN] mur
[Termes IGN] optimisation spatiale
[Termes IGN] positionnement en intérieur
[Termes IGN] vectorisationRésumé : (auteur) A large proportion of indoor spatial data is generated by parsing floor plans. However, a mature and automatic solution for generating high-quality building elements (e.g., walls and doors) and space partitions (e.g., rooms) is still lacking. In this study, we present a two-stage approach to indoor mapping and modeling (IMM) from floor plan images. The first stage vectorizes the building elements on the floor plan images and the second stage repairs the topological inconsistencies between the building elements, separates indoor spaces, and generates indoor maps and models. To reduce the shape complexity of indoor boundary elements, i.e., walls and openings, we harness the regularity of the boundary elements and extract them as rectangles in the first stage. Furthermore, to resolve the overlaps and gaps of the vectorized results, we propose an optimization model that adjusts the rectangle vertex coordinates to conform to the topological constraints. Experiments demonstrate that our approach achieves a considerable improvement in room detection without conforming to Manhattan World Assumption. Our approach also outputs instance-separate walls with consistent topology, which enables direct modeling into Industry Foundation Classes (IFC) or City Geography Markup Language (CityGML). Numéro de notice : A2021-385 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1781130 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1781130 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97642
in International journal of geographical information science IJGIS > vol 35 n° 6 (June 2021) . - pp 1205 - 1231[article]