Détail de l'auteur
Auteur Yue Shao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Method for extraction of airborne LiDAR point cloud buildings based on segmentation / Maohua Liu in Plos one, vol 15 n° 5 (May 2020)
[article]
Titre : Method for extraction of airborne LiDAR point cloud buildings based on segmentation Type de document : Article/Communication Auteurs : Maohua Liu, Auteur ; Yue Shao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 0232778 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bati
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de points
[Termes IGN] segmentationRésumé : (auteur) The LiDAR technology is a means of urban 3D modeling in recent years, and the extraction of buildings is a key step in urban 3D modeling. In view of the complexity of most airborne LiDAR building point cloud extraction algorithms that need to combine multiple feature parameters, this study proposes a building point cloud extraction method based on the combination of the Point Cloud Library (PCL) region growth segmentation and the histogram. The filtered LiDAR point cloud is segmented by using the PCL region growth method, and then the local normal vector and direction cosine are calculated for each cluster after segmentation. Finally, the histogram is generated to effectively separate the building point cloud from the non-building.Two sets of airborne LiDAR data in the south and west parts of Tokushima, Japan, are used to test the feasibility of the proposed method. The results are compared with those of the commercial software TerraSolid and the K-means algorithm. Results show that the proposed extraction algorithm has lower type I and II errors and better extraction effect than that of the TerraSolid and the K-means algorithm. Numéro de notice : A2020-832 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1371/journal.pone.0232778 Date de publication en ligne : 29/05/2020 En ligne : https://doi.org/10.1371/journal.pone.0232778 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97666
in Plos one > vol 15 n° 5 (May 2020) . - n° 0232778[article]