Détail de l'auteur
Auteur Salma Benmokhtar |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping and quantification of the dwarf eelgrass Zostera noltii using a random forest algorithm on a SPOT 7 satellite image / Salma Benmokhtar in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)
[article]
Titre : Mapping and quantification of the dwarf eelgrass Zostera noltii using a random forest algorithm on a SPOT 7 satellite image Type de document : Article/Communication Auteurs : Salma Benmokhtar, Auteur ; Marc Robin, Auteur ; Mohamed Maanan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 313 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] biomasse
[Termes IGN] cartographie hydrographique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fond marin
[Termes IGN] herbier marin
[Termes IGN] image SPOT 7
[Termes IGN] Maroc
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] plante aquatique d'eau salée
[Termes IGN] réflectance spectrale
[Termes IGN] typologie
[Termes IGN] Zostera noltiiRésumé : (auteur) The dwarf eelgrass Zostera noltei Hornemann (Z. noltei) is the most dominant seagrass in semi-enclosed coastal systems of the Atlantic coast of Morocco. The species is experiencing a worldwide decline and monitoring the extent of its meadows would be a useful approach to estimate the impacts of natural and anthropogenic stressors. Here, we aimed to map the Z. noltei meadows in the Merja Zerga coastal lagoon (Atlantic coast of Morocco) using remote sensing. We used a random forest algorithm combined with field data to classify a SPOT 7 satellite image. Despite the difficulties related to the non-synchronization of the satellite images with the high tide coefficient, our results revealed, with an accuracy of 95%, that dwarf eelgrass beds can be discriminated successfully from other habitats in the lagoon. The estimated area was 160.76 ha when considering mixed beds (Z. noltei-associated macroalgae). The use of SPOT 7 satellite images seems to be satisfactory for long-term monitoring of Z. noltei meadows in the Merja Zerga lagoon and for biomass estimation using an NDVI–biomass quantitative relationship. Nevertheless, using this method of biomass estimation for dwarf eelgrass meadows could be unsuccessful when it comes to areas where the NDVI is saturated due to the stacking of many layers. Numéro de notice : A2021-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10050313 Date de publication en ligne : 07/05/2021 En ligne : https://doi.org/10.3390/ijgi10050313 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97679
in ISPRS International journal of geo-information > vol 10 n° 5 (May 2021) . - n° 313[article]