Détail de l'auteur
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Predicting vegetation stratum occupancy from airborne LiDAR data with deep learning / Ekaterina Kalinicheva in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
[article]
Titre : Predicting vegetation stratum occupancy from airborne LiDAR data with deep learning Type de document : Article/Communication Auteurs : Ekaterina Kalinicheva , Auteur ; Loïc Landrieu , Auteur ; Clément Mallet , Auteur ; Nesrine Chehata , Auteur Année de publication : 2022 Projets : TOSCA-FRISBEE / Article en page(s) : n° 102863 Note générale : bibliographie
This study has been co-funded by CNES (TOSCA FRISBEE Project, convention no200769/00) and CONFETTI Project (Nouvelle Aquitaine Region project, France).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] parcelle agricole
[Termes IGN] régression
[Termes IGN] semis de points
[Termes IGN] strate végétaleRésumé : (auteur) We propose a new deep learning-based method for estimating the occupancy of vegetation strata from airborne 3D LiDAR point clouds. Our model predicts rasterized occupancy maps for three vegetation strata corresponding to lower, medium, and higher cover. Our weakly-supervised training scheme allows our network to only be supervised with vegetation occupancy values aggregated over cylindrical plots containing thousands of points. Such ground truth is easier to produce than pixel-wise or point-wise annotations. Our method outperforms handcrafted and deep learning baselines in terms of precision by up to 30%, while simultaneously providing visual and interpretable predictions. We provide an open-source implementation along with a dataset of 199 agricultural plots to train and evaluate weakly supervised occupancy regression algorithms. Numéro de notice : A2022-578 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.102863 Date de publication en ligne : 19/07/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102863 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99425
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102863[article]Documents numériques
peut être téléchargé
Predicting vegetation stratum ... - pdf auteurAdobe Acrobat PDF
Titre : Multi-layer modeling of dense vegetation from aerial LiDAR scans Type de document : Article/Communication Auteurs : Ekaterina Kalinicheva , Auteur ; Loïc Landrieu , Auteur ; Clément Mallet , Auteur ; Nesrine Chehata , Auteur Editeur : Computer vision foundation CVF Année de publication : 2022 Projets : 1-Pas de projet / Conférence : EarthVision 2022, Large Scale Computer Vision for Remote Sensing Imagery, workshop joint to CVPR 2022 19/06/2022 24/06/2022 New Orleans Louisiane - Etats-Unis OA Proceedings Importance : pp 1341 - 1350 Format : 21 x 30 cm Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte d'occupation du sol
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étage de végétation
[Termes IGN] foresterie
[Termes IGN] maillage
[Termes IGN] parcelle forestière
[Termes IGN] reconstruction d'objet
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) The analysis of the multi-layer structure of wild forests is an important challenge of automated large-scale forestry. While modern aerial LiDARs offer geometric information across all vegetation layers, most datasets and methods focus only on the segmentation and reconstruction of the top of canopy. We release WildForest3D, which consists of 29 study plots and over 2000 individual trees across 47 000m2 with dense 3D annotation, along with occupancy and height maps for 3 vegetation layers: ground vegetation, understory, and overstory. We propose a 3D deep net- work architecture predicting for the first time both 3D point- wise labels and high-resolution layer occupancy rasters simultaneously. This allows us to produce a precise estimation of the thickness of each vegetation layer as well as the corresponding watertight meshes, therefore meeting most forestry purposes. Both the dataset and the model are released in open access: https://github.com/ ekalinicheva/multi_layer_vegetation. Numéro de notice : C2022-007 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers CVF Thématique : FORET/IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/CVPRW56347.2022.00140 Date de publication en ligne : 25/04/2022 En ligne : https://arxiv.org/abs/2204.11620 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100509 Vegetation stratum occupancy prediction from airborne LiDAR 3D point clouds / Ekaterina Kalinicheva (2021)
Titre : Vegetation stratum occupancy prediction from airborne LiDAR 3D point clouds Type de document : Article/Communication Auteurs : Ekaterina Kalinicheva , Auteur ; Loïc Landrieu , Auteur ; Clément Mallet , Auteur ; Nesrine Chehata , Auteur Editeur : Vienne [Autriche] : Technische Universität Wien Année de publication : 2021 Collection : Geowissenschaftliche Mitteilungen, ISSN 1811-8380 num. 104 Projets : 1-Pas de projet / Conférence : SilviLaser 2021, 17th conference on Lidar Applications for Assessing and Managing Forest Ecosystems 28/09/2021 30/09/2021 Vienne + online Autriche open access proceedings Importance : pp 41 - 43 Note générale : Data sets in https://zenodo.org/badge/DOI/10.5281/zenodo.5555758.svg Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] capteur aérien
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] semis de pointsRésumé : (auteur) [introduction] Estimating the structure of vegetation is a crucial first step for many environmental and ecological applications (Daubenmire 1956). In particular, pasture land management requires estimating the occupancy of the different vegetation strata within agricultural parcels. This is a time-consuming undertaking, often performed with in situ ocular approximate measurements. Nowadays, airborne platforms allow public and private actors to gather high accuracy geometric and radiometric data over large areas (Chen 2007). Bolstered by the compelling improvements (Guo et al., 2020) and increased accessibility of deep learning for 3D point clouds, we propose a 3D deep learning method to estimate the occupancy of different vegetation strata from airborne LiDAR and camera sensors. Our method predicts raster occupancy maps for three vegetation strata (lower, medium, and higher) from 3D point clouds. Our training scheme allows our network to only be supervised with aggregated occupancy values at the plot level, which are easier to produce than point or pixel-level annotations. We also propose to use priors on the stratum elevation and the occupancy maps to improve the legibility and interpretability of the resulting maps. Numéro de notice : C2021-032 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.34726/wim.1909 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.34726/wim.1909 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98996 Unsupervised satellite image time series analysis using deep learning techniques / Ekaterina Kalinicheva (2020)
Titre : Unsupervised satellite image time series analysis using deep learning techniques Type de document : Thèse/HDR Auteurs : Ekaterina Kalinicheva , Auteur ; Maria Trocan, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2020 Importance : 182 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le doctorat de la Sorbonne Université, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 5
[Termes IGN] réseau neuronal profond
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse présente un ensemble d'algorithmes non-supervisés pour l'analyse générique de séries temporelles d'images satellites (STIS). Nos algorithmes exploitent des méthodes de machine learning et, notamment, les réseaux de neurones afin de détecter les différentes entités spatio-temporelles et leurs changements éventuels dans le temps. Nous visons à identifier trois types de comportement temporel : les zones sans changements, les changements saisonniers, les changements non triviaux (changements permanents comme les constructions, la rotation des cultures agricoles, etc). Par conséquent, nous proposons deux frameworks : pour la détection et le clustering des changements non-triviaux et pour le clustering des changements saisonniers et des zones sans changements. Le premier framework est composé de deux étapes : la détection de changements bi-temporels et leur interprétation dans le contexte multi-temporel avec une approche basée graphes. La détection de changements bi-temporels est faite pour chaque couple d’images consécutives et basée sur la transformation des features avec les autoencodeurs (AEs). A l’étape suivante, les changements à différentes dates qui appartiennent à la même zone géographique forment les graphes d’évolution qui sont par la suite clusterisés avec un modèle AE de réseaux de neurones récurrents. Le deuxième framework présente le clustering basé objets de STIS. Premièrement, la STIS est encodée en image unique avec un AE convolutif 3D multi-vue. Dans un deuxième temps, nous faisons la segmentation en deux étapes en utilisant à la fois l’image encodée et la STIS. Finalement, les segments obtenus sont clusterisés avec leurs descripteurs encodés. Note de contenu : 1. Introduction to Remote Sensing and Satellite Image Analysis
1.1 Introduction
1.2 Remote Sensing Images
1.3 Satellite Missions
1.4 Introduction to Data Mining Applied to Images
2. Machine Learning. Clustering and Anomaly Detection
2.1 Introduction
2.2 Unsupervised Learning
2.3 Clustering
2.4 Anomaly Detection
2.5 Quality Indices
2.6 Discussion
3. Feature Extraction using Deep Learning Techniques
3.1 Introduction
3.2 Deep Learning
3.3 AutoEncoders in Image Processing
3.4 Neural Networks Structure
3.5 Discussion
4. Bi-temporal Change Detection
4.1 Introduction
4.2 Related Works
4.3 Methodology
4.4 Data
4.5 Experiments
4.6 Discussion
5. Multi-temporal Change Detection
5.1 Introduction
5.2 Related Works
5.3 Methodology
5.4 Data
5.5 Experiments
5.6 Conclusion
6. Satellite Image Time Series Clustering
6.1 Introduction
6.2 Related Works
6.3 Methodology
6.4 Data
6.5 Experiments
6.6 Discussion
7. Conclusion
7.1 Thesis Contributions
7.2 Short Term Perspectives
7.3 Long Term Perspectives and LimitationsNuméro de notice : 26536 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Sorbonne université : 2020 Organisme de stage : ISEP Institut Supérieur d'Electronique de Paris nature-HAL : Thèse DOI : sans Date de publication en ligne : 01/03/2021 En ligne : https://tel.archives-ouvertes.fr/tel-03032071/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97681